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Abstract

In this paper, we develop mathematical theory for recursive construction of First In First Out (FIFO)
optical multiplexers by the combination of (bufferless) crossbar Switches and fiber Delay Lines (SDL). We
show that by cascading multi-stage SDL units, 2-to-1 multiplexers with a large buffer can be emulated exactly
for both the departure process and the loss process from the multiplexer. Such results are extended to the
case of n-to-1 multiplexers by introducing a new class of multiplexers, called delayed-loss multiplexers. A
delayed-loss multiplexer has the same departure process as an ordinary multiplexer. However, lost packets
due to buffer overflow in a multiplexer might be delayed. A key result from our theory is the self-routing
n-to-1 multiplexer, where the routing path of a packet through the multi-stage SDL units can be determined
upon its arrival.
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I. INTRODUCTION

There is an urgent need to build high speed packet switches that scale with the transmission
speed of fiber optics. The key challenge to such a problem is to build high speed buffers that
resolve conflicts of packets competing for the same resource. Two common approaches are used.
The first approach is to use parallel electronic buffers to acquire the needed speedup (see e.g., [7],
[14], [5], [16]). The other approach is to use fiber delay lines for buffering in optical packet switches
(see e.g., the excellent review papers [11], [9], [21] and references therein).

We will focus on the second approach in this paper. Unlike electronic memory, fiber delay lines
are not capable of providing random memory access. They can only be accessed in a pre-determined
sequential manner. As such, conflict resolution by fiber delay lines is in general much more difficult
than that by electronic memory. As indicated in [11], there are several architectures proposed in
the literature that use fiber delay lines as buffers. In [2], [3], [4], SDL (Switched fiber Delay Lines)
is proposed in the CORD (contention resolution by delay lines) project. An SDL unit in [3] is an
optical fabric that only consists of optical crossbar switches and fiber delay lines. By redistributing
packets through delay lines with different delays, it is then possible to resolve conflicts for the same
resource over time and space. In Figure 1, we illustrate this idea via a simple example. There are
two input links that are multiplexed into an output link. Suppose that two packets arrive at both
input links. This cause a conflict for the output link. To resolve such a conflict, we can first put
these two packets through a 2 x 2 switch and distribute one packet to a zero delay transmission
line (the upper link) and the other to a fiber delay line with one unit of delay (the lower link). By

so doing, these two packets can be multiplexed into the same link sequentially.
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Fig. 1. An illustrating example of using switched delay lines for conflict resolution

To construct a large buffer, one needs to cascade multi-stage SDL units. However, finding efficient
control of the switches that distribute packets to resolve conflicts becomes a problem. In [20], [8],
a genuine design, named COD (Cascaded Optical Delay-Lines), is proposed for First In First Out
(FIFO) buffers by using 2 x 2 crossbar switches and fiber delay lines. The control of COD is easy
and only requires local information. However, the number of 2 x 2 switches in such an architecture
is proportional to the buffer size. In [10], a more efficient design, Logarithm Delay-Line Switch, is

proposed for the 2 x 2 buffered switch. Such an architecture is based on output buffer emulation and



the path for a packet to go through the Logarithm Delay-Line Switch is uniquely determined by its
virtual delay derived from the output buffer emulation. The number of 2 x 2 switches needed for
such an architecture is only O(log B), where B is the buffer size. In [12], SLOB (Switch with Large
Optical Buffers) is proposed for the extension of optical buffered switches with n input/output
ports (n > 2). Such an architecture also uses output buffer emulation and relies on a special
hardware, called a primitive switching element (PSE). Each PSE itself is an n x 2n output-buffered
switch with buffer size n — 1. Unlike the Logarithm Delay-Line Switch, the routing path of a packet
in SLOB cannot be uniquely determined upon its arrival. This makes control of the PSEs much
more difficult. In fact, a small control message must be transmitted electronically for each packet,

representing the remaining delay over the remaining PSE’s.
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Fig. 2. A system with parallel queues

Inspired by these prior works, in this paper we develop mathematical theory for recursive con-
struction of FIFO optical multiplexers with large buffers by using switched delay lines. Our idea
comes from a well known queueing result. Consider a system with parallel queues as shown in Fig-
ure 2. Suppose that we operate the system as follows: a customer that arrives at the system joins
the shortest queue (the queue with the least number of customers), and the server after completing
the service of a customer always chooses a customer from the longest queue (the queue with the
largest number of customers). By so doing, these parallel queues are kept in the most balance
state, i.e., at any time the difference between the number of customers in the longest queue and
the number of customers in the shortest queue is at most 1. If the service time of all the customers
are all identical, then the longest queue service policy and the shortest queue dispatching policy
are simply the round robin policy. Moreover, the system with parallel queues behaves as if it were
a single queue with a shared buffer. Based on this, one can build a multiplexer with a large buffer
by time interleaving several multiplexers with small buffers (Surprisingly enough, such an approach

was also used in [14], [5], [16] for parallel electronic buffers). Our main work in this paper is then



to design an SDL unit associated with an operation rule so that packet arrivals are dispatched in

a round robin fashion to the parallel multiplexers with small buffers.
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Fig. 3. A self-routing n-to-1 multiplexer with B = n*F — 1.

One of the key results that comes from our mathematical theory is the self-routing n-to-1 mul-
tiplexer shown in Figure 3. As shown in Figure 3, there are k stages of SDL units (the last one is
simply a bufferless multiplexer). Each stage, except the first stage, consists of an n x n crossbar
switch and n fiber delay lines (with delays specified in the figure). Packets are assumed to be of the
same size and it takes one unit of delay to transmit a packet. The first stage requires an n x (2n—1)
switch as additional output links are used for dropping packets due to buffer overflow. The buffer
size of such a multiplexer is n¥ — 1. As in [10], [12], we use output buffer emulation for this system.
It keeps track of the number of packets stored in the system. If such a number exceeds n* — 1,
further arrivals are lost immediately. Specifically, let ¢(¢) be the number of packets stored in the

system. Then ¢(t) is governed by

n—1
g(t) = min | max[0,q(t — 1) + ) a;(t) — 1],n* — 1|, (1)
i=0
where a;(t), i = 0,1,...,n—1, is the number of arrival from the i** input link. Let ¢ be the number

of packets stored in the system when a particular packet enters the system. We call this the virtual

delay of the packet (as in the queueing theory). Then we have 0 < ¢ < n* — 1 and there exists a

unique vector r = (r1,72,...,r;) with 0 <r; <n —1 for all j such that
k
q= Z rjnj_l.
=1

The packet can then be self-routed through the network element by taking the rjth output link at
the j** n x n switch. There will not be any conflicts in the self-routing multiplexer, i.e., no more

than one packet occupies the same link at any time.



To see the analogy between our self-routing multiplexer and the classical Batcher-Banyan self-
routing network (see e.g., Schwartz [18] and Hui [13]), one may view the virtual delay in our
self-routing multiplexer as the “output address” in the Batcher-Banyan self-routing network. By
routing packets to different “output addresses,” we then resolve conflicts at the multiplexer.

We also note that the self-routing multiplexer in Figure 3 is in fact quite similar to the SLOB
n [12]. The difference is that the PSE in the SLOB is now replaced by a simple n x n (bufferless)
crossbar switch. As one can also use n n-to-1 multiplexers to build an n x n output-buffered switch,
the main advantage of using the architecture in Figure 3 is the self-routing property that leads to
a much simpler control mechanism than that in the SLOB.

This paper is organized as follows. In Section II, we start from the definitions of basic network
elements and develop the mathematical theory for 2-to-1 FIFO optical multiplexers. For the 2-to-1
multiplexers, we can emulate both the departure process and the loss process from a FIFO finite
buffer queue. In Section III, we extend the results in Section II to n-to-1 multiplexers. We define
a new concept, called a delayed-loss multiplexer. For such a multiplexer, its departure process is
the same as that from a FIFO finite buffer queue, but packet losses may be delayed. By discarding
packets in advance, we show that the delayed-loss multiplexer can be made into a self-routing
multiplexer in Figure 3. The paper is concluded in Section IV, where we address several topics for

future research.
II. 2-TO-1 MULTIPLEXERS

A. Definitions of basic network elements

In this paper, we consider multiplexing fixed size packets over optical links. We assume that
propagation delay is well compensated so that time is synchronized and slotted. By so doing, a
packet can be transmitted within a time slot. Since there is at most one packet within a time slot,
we may use indicator variables to represent the state of a link. A link is in state 1 at time ¢ (for

some t = 0,1,2,...) if there is a packet in the link at time ¢, and it is in state 0 at time ¢ otherwise.
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Fig. 4. An optical delay line with delay d




Definition 1 (Delay line) An (optical) delay line in Figure 4 is a network element that has one
input link and one output link. In Figure 4, the delay is d. Let a(t) be the state of the input link.
Then the state of the output link is a(t — d).

An optical delay line acts as a memory element in our construction. Note that at the end of the
t — 1" time slot, the packets that arrive at time ¢t —1,£—2, ...t —d, are stored in the optical delay
line with delay d.
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Fig. 5. A 2 x 2 switch

Definition 2 (Switch) A 2 x 2 (optical) switch has two input links and two output links (see
Figure 5). Let a1(t) and ao(t) be the states of the lower and upper inputs, and bi(t) and by(t) be
the states of the lower and upper outputs. The switch is said to be in the “bar” state at time t if
b1(t) = a1(t) and bo(t) = ag(t). It is said to be in the “cross” state at time t if by(t) = ao(t) and
bo(t) = ai(t).

Unlike an optical delay line, the 2 x 2 switch in Definition 2 is a memoryless element. One of the
main objectives of this paper is to combine optical delay lines with memoryless optical switches to
form buffered multiplexers, which in turn can be used for building buffered switches. One key step

in doing this is the prioritized concentrator defined below.

Definition 3 (Concentrator) A prioritized concentrator in Figure 6 is a 2 X 2 switch with its
connection patterns depending on its two inputs. Let a1(t) (resp. ao(t)) be the state of the dotted
(resp. undotted) input, and by(t) (resp. bi(t)) be the state of the dotted (resp. undotted) output.

The switch is set to the cross state at time t if a1(t) = 1, i.e., there is a packet arrival at the dotted
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Fig. 6. A prioritized concentrator

input at time t. Otherwise, the switch is set to the bar state. Thus, if there is a packet at the dotted
input at time t, this packet is transmitted to the dotted output. If there is another packet at the
undotted input, then the packet at the undotted input is transmitted to the undotted output. When
there is mo packet at the dotted input and there is a packet at the undotted input, the packet at the

undotted input is transmitted to the dotted output. Such an operation rule ensures that
bo(t) = max[ag(t), a1 (t)], (2)

and

b1 (t) = minlag(t), a1 (t)]. (3)

We note that a prioritized concentrator is called a track changer in [20] for 2-to-1 multiplexers.
As its main objective is to perform traffic concentration (this will become clear in the general case
of n-to-1 multiplexers), we prefer using the name prioritized concentrator as the name reflects its

functional objective.
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Fig. 7. A 2-to-1 multiplexer with buffer B

Definition 4 (Multiplexer) A 2-to-1 multiplezer with buffer B has two input links and two output
links (see Figure 7). One output link is for departing packets and the other is for lost packets. As
shown in Figure 7, let a1(t) (resp. ao(t)) be the state of the dotted (resp. undotted) input link, d(t)
(resp. £(t)) be state of the output link for departing (resp. lost) packets, and q(t) be the number
of packets queued at the multiplezer at time t (at the end of the t*" time slot). Then the 2-to-1
multiplexer with buffer B satisfies the following four properties:



(P1) flow conservation: arriving packets from the two input links are either stored in the buffer or

transmitted through the two output links, i.e.,

q(t) = q(t = 1) +ao(t) + ar(t) — d(t) — £(2). (4)

(P2) Non-idling: there is always a departing packet if there are packets in the buffer or there are

arriving packets, i.e., |
d(t) = { 0 ifq(t—1)=ao(t) =a(t) =0 5

1 otherwise

(P3) Mazimum buffer usage: arriving packets are lost only when buffer is full, i.e.,

o) :{ (1) igéiwisle) B and ap(t) = a1(t) =1 . (6)
(P4) FIFO with prioritized inputs: packets depart in the first in first out (FIFO) order. Moreover,
if each input has an arriving packet, the packet from the dotted input is put in the multiplexer
first. In other word, the virtual delay for the dotted input ay(t) is q(t — 1), the number of packets
that is stored in the multiplexer at t — 1. The wvirtual delay for the undotted input ao(t) is then
q(t — 1) + a1(¢t) (if that packet is not lost).

Note that a 2-to-1 multiplexer with buffer B is simply a discrete-time queue with buffer B and
two inputs in the queueing theory. As such, the state of a 2-to-1 multiplexer with buffer B is simply
q(t), the number of packets stored in the multiplexer at the end of the #!* time slot. This is crucial
in simplifying the complexity of our analysis as a large number of binary states in optical delay
lines now can be summarized by a single number. We also note that a prioritized concentrator in
Definition 3 is a 2-to-1 multiplexer with buffer 0. In this case, it is stateless as ¢(t) = 0 for all ¢.

In addition to the state aggregation property described above, we also need the time interleaving

property described below.

Definition 5 (SDL multiplexer) A 2-to-1 multiplexer is called a 2-to-1 SDL multiplexer if the
multiplexer is built with delay lines (in Definition 1) and switches (in Definition 2). A 2-to-1 SDL
multiplezer is with scaling factor k if the delay in every delay line is k times of that in the original

(unscaled) 2-to-1 SDL multiplexer.

Proposition 6 (Time interleaving property) A 2-to-1 SDL multiplexer with scaling factor k

can be operated as time interleaving of k 2-to-1 SDL multiplexers.

Proof. It suffices to illustrate this for the case with & = 2. To perform time interleaving of

two 2-to-1 SDL multiplexers, we partition time into even and odd numbered time slots. We then



operate these two 2-to-1 SDL multiplexers alternatively between even numbered time slots and odd
numbered time slots. As such, the states of each of the two 2-to-1 SDL multiplexers are changed
every two time slots (and remain unchanged when the multiplexer is not operated). In short, each
of the time interleaved SDL multiplexers is operated at the clock rate that is one half of that in the
original 2-to-1 SDL multiplexer. In view of this, each of the time interleaved SDL multiplexers can
then be implemented by the original 2-to-1 SDL multiplexer by doubling the delay in each delay
line and changing the state in each switch every two time slots. Clearly, each of the time interleaved
SDL multiplexers can then be implemented by a 2-to-1 SDL multiplexer with scaling factor 2.

Instead of using two 2-to-1 SDL multiplexer with scaling factor 2 for time interleaving of two
2-to-1 SDL multiplexers, now we show that we only need one. To see this, call the two time
interleaved multiplexers multiplezer A and multiplezer B, and the 2-to-1 SDL multiplexer with
scaling factor 2 multiplezer C. As described in the last paragraph, note that the states of the
switches in multiplexers A and B are changed every two time slots. Thus, for the even numbered
time slots, we can set the states of the switches in multiplexer C according to the states of the
switches in multiplexer A. Similarly, for the odd numbered time slots, we can set the states of the
switches in multiplexer C according to the states of the switches in multiplexer B. By so doing, we
can operate a 2-to-1 SDL multiplexer with scaling factor 2 as time interleaving of two 2-to-1 SDL
multiplexers.

B. Recursive construction
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Fig. 8. A 2-to-1 multiplexer with buffer 2B + 1

In this section, we show how one constructs a 2-to-1 multiplexer with a large buffer by time
interleaving two 2-to-1 multiplexers with small buffers. In Figure 8, we consider a network element
with two inputs and two outputs. It is a concatenation of a prioritized concentrator, a 2 x 2 switch

and two 2-to-1 multiplexers with buffer B. The two outputs of the 2 x 2 switch are connected to



two delay lines with delay 0 and 1, respectively. Partition time into even and odd numbered time
slots. For the even numbered time slots, the two outputs of the delay lines (after the 2 x 2 switch)
and the two outputs of the network element are connected to the two inputs and the two outputs of
one multiplexer, respectively. On the other hand, for the odd numbered time slots, the two outputs
of the delay lines and the two outputs of the network element are connected to the two inputs and
the two outputs of the other multiplexer. The state of each multiplexer, i.e., the number of packets
stored in the multiplexer, remains unchanged when the multiplexer is not connected. Thus, every
multiplexer changes its state every two time slots.

Define the total number of packets stored in the network element as the sum of the number of
packets stored in each multiplexer and the number of packet stored in the delay line with delay 1.
The 2 x 2 switch is set to the cross state if there is an odd number of packets stored in the network

element (at the end of the previous time slot), and is set to the bar state otherwise.

Theorem 7 If the network element in Figure 8 is started from an empty system, then it is a 2-to-1

multiplexer with buffer 2B + 1.

The proof of Theorem 7 is given in Appendix A.
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Fig. 9. A 2-to-1 multiplexer with buffer 1

Example 8 Since a prioritized concentrator is a 2-to-1 multiplexer with buffer 0, it follows from
Theorem 7 that the network element in Figure 9 is a 2-to-1 multiplexer with buffer 1. The 2 x 2
switch is set to the cross state if there is a packet stored in the network element and is set to the

bar state if the network element is empty.
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Fig. 10. A 2-to-1 multiplexer with B = 3.



Example 9 In Figure 10, we illustrate how one applies Theorem 7 to construct a 2-to-1 multiplexer
with buffer 3 from the 2-to-1 multiplexer with buffer 1 in Figure 9. Note that the inner block in
Figure 10 is exactly the same as the 2-to-1 multiplexer in Figure 9 except that the delay in the
delay line is doubled from 1 to 2. As such, it is a 2-to-1 SDL multiplexer with buffer 1 and scaling
factor 2. From the time interleaving property of scaled SDL multiplexers in Proposition 6, this
can be viewed as time interleaving two 2-to-1 multiplexers: the even numbered time slots for one
multiplexer and the odd numbered time slots for the other. As a direct consequence of Theorem
7, the network element in Figure 10 is indeed a 2-to-1 multiplexer with buffer 3. As shown in
Figure 9, let by1(t) (resp. bo1(t)) be the state of the lower output of the first (resp. second) 2 x 2
switch. Note that the total number of packets stored in the network element at time ¢ — 1 is
bi1(t—1)+b21(t—1)+bo1(t —2). Thus, we have from the operation rule in Theorem 7 that the first
switch is set to the cross state at time ¢ if b1y (t — 1) + bo1 (¢ — 1) + ba1 (t — 2) is an odd number and
the bar state otherwise. On the other hand, we have from the operation rule in Example 8 that

the second switch is set to the cross state at time ¢ if by; (¢t —2) = 1 and the bar state otherwise.

Now one can use Theorem 7 and the time interleaving property in Proposition 6 to recursively
construct a 2-to-1 multiplexer with buffer 2¥ —1. The m'* switch, m = 1,2, ..., k, is set to the cross
state at time ¢ if Ef:m Z?;m bi1(t — 2™714) is an odd number and the bar state otherwise, where
b1 (t) is the state of the lower output of the m* switch. One can further combine the operation
of the prioritized concentrator and the 2 x 2 switch at each stage by a 2 x 2 switch (see Figure
11). The combined switch is to set to the bar state if both the prioritized concentrator and the
original 2 x 2 switch are set to the same state, and it is set to the cross state otherwise. For such

a multiplexer, all its switch patterns are completely determined by the states of the multiplexer.
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Fig. 11. A 2-to-1 multiplexer with B = 2% — 1.

III. n-TO-1 MULTIPLEXERS

In this section, we extend the results for 2-to-1 multiplexers to n-to-1 multiplexers. In Section
II, we construct network elements with 2 x 2 switches and optical delay lines that emulate exact
2-to-1 multiplexers for both the departure process and the loss process. Exact emulation of n-to-1

multiplexers is much more difficult for n > 2. Instead, we only construct network elements with

10



n X n switches and optical delay lines that generate the same departure processes as those from
n-to-1 multiplexers. Packet losses at our n-to-1 multiplexers might be delayed. Such a construction

is called a delayed-loss multiplexer in this paper.

A. Definitions of basic network elements
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Fig. 12. An n-to-n prioritized concentrator
We first generalize the 2 x 2 prioritized concentrator in Definition 3.

Definition 10 (Concentrator) An n x n prioritized concentrator (see Figure 12) is an n X n
switch with its connection pattern depending on its n inputs. Both the input links and output links
are numbered from the top to the bottom. The priority of the input links is increasing in the link
number and the priority of the output links is decreasing in the link number (the dotted input and
the dotted output in the diagrammatic representation have the highest priority). The packets that
arrive at high priority input links have priority to be switched to high priority output links. Thus,
if there is a packet arrival at input link n — 1, it is switched to output link 0. If there is no arrival
at input link n — 1 and there is an arrival at input link n — 2, the arrival at input link n — 2 is
switched to output link 0. Mathematically, the state at output link k is

n

bi(t) = i;Ian_i(t)l {Z;-;ll () = k}

where 1¢ 4y is 1 if A is true and 0 otherwise.

Note that by (t) =1, k =0,1,...,n—1, if and only if there are at least k+ 1 packet arrivals at time
t. Thus, the propose of the n x n prioritized concentrator is to perform traffic concentration, i.e.,
to sort inputs {a;(t),s =0,1,...,n — 1} (according to a pre-assigned priority) so that by(t) = a;(t)
for some 7 and that bg(t) > bg41(¢) for k=0,1,...,n— 1.

11
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Fig. 13. An n-to-1 multiplexer with buffer B

Definition 11 (Multiplexer) An n-to-1 multiplexer with buffer B (see Figure 18) is a network
element with n input links and n output links. We call the first output link of this multiplexer the
departure port and the rest of the output links the loss ports. As shown in Figure 13, let a;(t),
i=0,1,...,n—1, be the state of the n input links, d(t) be state of the output link for the departure
port, £;(t), i = 1,2,...,n — 1, be the state of the i'" loss port, and q(t) be the number of packets
queued at the multiplezer at time t (at the end of the t*" time slot). Then the n-to-1 multiplezer
with buffer B satisfies the following four properties:

(P1) flow conservation: arriving packets from the n input links are either stored in the buffer or

transmitted through the n output links, i.e.,

n—1 n—1
g(t) =q(t—1)+ > ai(t) —d(t) = > _ 4(t). (7)
1=0 =1

(P2) Non-idling: there is always a departing packet if there are packets in the buffer or there are

arriving packets, i.e.,

_ L0 gt =1 + 3 ai(t) = 0
dt) = { 1 otherwise ' (8)
(P3) Mazimum buffer usage: arriving packets are lost only when buffer is full, i.e., fori =1,... ,n—
L,
1 ifgt 1)+ ai(t) > BHi+1
) = { 0 otherwise ' )

(P4) FIFO with prioritized inputs: packets depart in the first in first out (FIFO) order. The priority
of the input links is increasing in the link number. As such, if there are multiple arriving packets,
the packet from the largest input link number is put in the multiplexer first. Specifically, the virtual
delay for the input a;(t) is q(t — 1) + Z?;;_H a;(t), the sum of the number of packets that is stored

in the multiplezer at t — 1 and the number of higher priority packets that arrives at time t.

12



From (P1-3), it is well known from the queueing theory that the ¢(t) process of an n-to-1 multi-

plexer satisfies the following recursive equation:
q(t) = min[(q(t — 1) + a(t) — 1)*, B], (10)

where a(t) = Z?:_ol a;(t) is the total number of arrivals at time ¢, and z+ = max(0,z). In view
of (10), if one does not care about the exact match of the loss processes, one can emulate the
departure process of an n-to-1 multiplexer by emulating the ¢(t) process only. This leads to our

definition of delayed-loss multiplexers in Definition 12.

Definition 12 (Delayed-loss multiplexer) An n-to-1 delayed-loss multiplexer with buffer B is
a network element with n input links and n output links. As in Definition 11, the first output link of
this multiplexer is the departure port and the rest of the output links are the loss ports (we use the
same diagrammatic representation in Figure 13). Let q(t) be the number of packets that are queued
at the delayed-loss multiplezer at time t (and will be departed from the departure port). Then the
n-to-1 delayed-loss multiplexer with buffer B satisfies the recursive equation in (10), (P2) and (P4)
of Definition 11.

As (10) is also the governing equation of the n-to-1 multiplexer, (P2) and (P4) imply that the
delayed-loss multiplexer and the multiplexer have identical FIFO departure processes (from the
departure ports) if both systems are started from empty systems and subject to identical arrival
processes.

We note that an n x n prioritized concentrator is an n-to-1 multiplexer with buffer 0. It is also
an n-to-1 delayed-loss multiplexer with buffer 0.

As in Definition 5, we define scaled SDL multiplexers in Definition 13 below. As explained in

Section II-A, scaled SDL multiplexers have the time interleaving property in Proposition 6 .

Definition 13 (SDL multiplexer) A n-to-1 (delayed-loss) multiplezer is called a n-to-1 SDL
(delayed-loss) multiplezer if the multiplezer is built with delay lines (in Definition 1) and n X n
switches. A n-to-1 SDL (delayed-loss) multiplezer is with scaling factor k if the delay in every
delay line is k times of that in the original n-to-1 SDL (delayed-loss) multiplezer.

B. Recursive construction

In this section, we show how one constructs an n-to-1 delayed-loss multiplexer with a large buffer
by time interleaving n n-to-1 delayed-loss multiplexers with small buffers. In Figure 14, we consider
a network element with n inputs and n outputs. It is a concatenation of a prioritized concentrator,

an n X n switch and n n-to-1 delayed-loss multiplexers with buffer B. The i output of the n x n
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Fig. 14. An n-to-1 delayed-loss multiplexer with buffer n(B +1) — 1

switch is connected to a delay line with delay 7, ¢ = 0,1,...,n — 1. The n outputs of these delay
lines are connected to the inputs of the n multiplexers in a round robin fashion. The n outputs of
the n multiplexers are connected to the n outputs of the network element in the same order. The
state of each multiplexer, i.e., the number of packets stored in the multiplexer, remains unchanged
when the multiplexer is not connected. Thus, every multiplexer changes its state every n time slots.

As shown in Figure 14, let a;(t), b;(t) and ¢;(t), « = 0,1,...,n — 1, be the inputs of the con-
centrator, the outputs of the concentrator, and the outputs of the n x n switch. Let q?(t —1),
1 =1,...,n, be the number of packets stored at time ¢ — 1 in the n-to-1 delayed-loss multiplexer
that is going to be connected to the n x n switch at time ¢ +4 — 1. As such, ¢{(¢ — 1) is the number
of packets stored at time ¢ — 1 in the n-to-1 delayed-loss multiplexer that is going to be connected
to the n X n switch at time ¢. Since the n multiplexers with buffer B are connected to the n x n

switch in a round robin fashion, we have
@) = t=1), i=1,...,n—1L (11)

Also, we have from the governing equation for a multiplexer in (10) that

n—2
gn(t) =min[(¢?(t = 1) + Y erpi(t —1— k) + co(t) = 1)T, B]. (12)
k=0

14



We define

n—i—1

gi(t—1) =minfg)(t — 1) + Y cp(t—1-k),B+1], i=12...,n, (13)
k=0

with the convention that the sum equals 0 if the upper index is smaller than the lower index. The
quantity g;(¢ — 1) represents the number of packets in the system at time ¢ — 1 that are eligible to
leave the system from the departure port at time ¢ + ¢ — 1 if the arrivals were blocked from time ¢
onward.

For this network element, we also define

q(t—1) Zqzt—l (14)

Clearly, q(t — 1) is the total number of packets in the system that will depart from the departure
link from time ¢ onward if the arrivals to the system were blocked. The connection pattern of the
n x n switch in the middle stage of the network element is set according to the value of ¢(t — 1).
As we shall prove later, the network element is a delayed-loss multiplexer with buffer n(B+1)—1
(under the operation rule R,, defined below) and ¢(¢ — 1) is also the number of packets queued in
the delayed-loss multiplexer at time ¢ — 1.
Rule R,: If q(t — 1) mod n = m, the switch in the middle stage of the network element in Figure
14 is set to the n x n permutation matrix P,,, m = 0,1,...,n — 1, where the (7, j)-th element of

P, is
(Po)is = 1 if j=(i+m)modn
M1 0 otherwise
Specifically, if output link j of the switch is connected with input link ¢, then c;(t) = b;(t), where
j=(i+m)modn = (i +¢(t — 1)) modn.
Intuitively, one may view ¢;(t)’s as the numbers of customers in the parallel queues in Figure 2
and Rule R,, mimics the join-the-shortest-queue policy and the serve-the-longest-queue policy. By

so doing, the parallel queues are kept in the most balanced state, i.e., for all ¢

q(t) > qa(t) > ... > qu(t) > qu(t) — 1.

As a result, the parallel queues behaves as if it was a single queue with a shared buffer. This leads

to the following theorem and its formal proof is shown in Appendix B.

Theorem 14 If the network element in Figure 14 is operated under Rule R, and it is started from

an empty system, then it is an n-to-1 delayed-loss multiplexer with buffer n(B + 1) — 1.
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Fig. 15. An n-to-1 delayed-loss multiplexer with buffer n — 1

Example 15 Since a prioritized concentrator is an n-to-1 multiplexer with buffer 0, it follows from
Theorem 14 that the network element in Figure 15 is an n-to-1 delayed-loss multiplexer with buffer

n — 1. For this example, we have from (13) that

n—i—1
qi(t — 1) = min] ]; cipp(t—1—Fk),1] = ngrgg)fiil[ci%(t —1—k)], (15)
fori=1,2,...,n—1, and ¢,(t — 1) = 0. Thus,
n—1
t=1) =3 max_lein(t— kD] (16)

i=
The connection pattern of the n X n switch at time ¢ is then set according to Rule R,, that only
depends on ¢(t — 1). We note that the total number of packets that can be stored in the optical
delay lines of the network element in Figure 15 is n(n—1)/2, which is much larger than the designed
buffer size n — 1. Tt means that some packets that should have been discarded when they arrive
are still stored in the system. In view of (15), one can see that at most one packet can be departed
from the departure port at time ¢ 4+ ¢ — 1 and the rest of packets that are stored in the delay lines

will be departed from the loss ports. This is how the delayed losses occur!

Example 16 In Figure 16, we illustrate how one applies Theorem 14 to construct an n-to-1
delayed-loss multiplexer with buffer n? — 1 from the n-to-1 delayed-loss multiplexer with buffer
n—1 in Figure 15. Note that the inner block in Figure 16 is exactly the same as the n-to-1 delayed-
loss multiplexer with buffer n — 1 in Figure 15 except that the delay in every delay line is scaled n
times. As such, it is a n-to-1 delayed-loss SDL multiplexer with buffer 1 and scaling factor n. From
the time interleaving property of scaled SDL multiplexers in Proposition 6, this can be viewed as

time interleaving n n-to-1 delayed-loss multiplexers with buffer n — 1. As a direct consequence of
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Fig. 16. An n-to-1 delayed loss multiplexer with B = n? — 1.

Theorem 14, the network element in Figure 16 is indeed an n-to-1 delayed-loss multiplexer with
buffer n? — 1. As shown in (16) in Example 15, q?(t — 1), i.e., the number of packets stored in the

multiplexer that is going to be connected at time ¢ + j — 1, has the following form:

n—1

q;](t—l) ZO<I§£?LJX7, l[el+k(t_(k+1)n+]_1)]’ .7 = 132aan (17)
=1

Moreover, the second n x n switch is set according to q)(t — 1). To see the operation of the first
n x n switch, we have from (13) that

n—j—1
gj(t—1) =min[g)(t - 1) + Y cjur(t—1-k),B+1], j=12...,n. (18)
k=0

Thus, the operation of the first n x n switch is set according to ¢(t — 1) = Z?Zl gi(t—1).

By Theorem 14 and the time interleaving property in Proposition 6, one can then recursively
construct a multi-stage multiplexer with a large buffer. One can further combine the operation of
the prioritized concentrator and the n x n switch at each stage by an n x n switch. In Figure 17,
we show the construction of an n-to-1 delayed-loss multiplexer with buffer n¥ — 1. All its switching
patterns are completely determined by the state of the multiplexer.

Now we have shown from Theorem 14 a way to control the switching patterns in the n-to-
1 delayed-loss multiplexer with buffer n¥ — 1 in Figure 17. One key observation from this is
that those packets departing from the departure port have the same delays as the (ideal) n-to-1
multiplexer with buffer n¥ — 1 since the two departure processes are identical and both of them
are FIFO. Moreover, for any packet that departs from the departure port and experiences delay

0 < d < nF—1, there is a unique path through the network element. The path can be determined by
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Fig. 17. An n-to-1 delayed-loss multiplexer with B = n* — 1.

the unique decomposition of d = Z?Zl rjnj ~! and the packet is sent through the network element
by taking the rjth output link at the j* n x n switch. However, the path of a packet that departs
from a loss port cannot be determined this way. Thus, if we discard all the packets that depart from
the loss ports before entering the network element, then we are left with the packets that depart
from the departure port and the paths of those packets can be determined upon their arrivals. As
these paths are identical to those from the n-to-1 delayed-loss multiplexer, we conclude that these
paths do not conflict with each other, i.e., no more than one packet occupies the same link at any
time. This leads to the self-routing multiplexer in Figure 3.

In Figure 3, we replace the first n x n switch by an n x (2n — 1) switch in Figure 17. The network
element in Figure 3 keeps track of the number of packets stored in it. If such a number exceeds
n* — 1, further arrivals are lost immediately. Specifically, let ¢(t) be the number of packets stored

in the network element. Then ¢(t) is governed by

n—1
g(t) = min[(g(t — 1) + Y a;(t) = 1), n* — 1], (19)
i=0
and . i
oy 1 gt = 1) + 300 ai(t) > nF 4
filt) = { 0 otherwise ’ (20)
fori=1,...,n—1. Let g be the number of packets stored in the network element when a particular

packet enters the network element. Then we have 0 < ¢ < n* — 1 and there exists a unique vector

r=(ri,r2,...,rs) with 0 <r; <n —1 for all j such that

k

q= ernjfl.

j=1

The packet is then routed through the network element by taking the rjth output link at the j*
n X n switch. Note that we now not only match the departure process but also the loss processes.

Thus, the network element in Figure 3 is an n-to-1 multiplexer with buffer n¥ — 1.
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IV. CONCLUSIONS

In this paper, we developed mathematical theory for recursive construction of FIFO optical
multiplexers with switched delay lines. In Section II, we showed that exact emulation of 2-to-1
FIFO optical multiplexers can be achieved for both the departure process and the loss process. In
Section III, we extended the results for 2-to-1 multiplexers to n-to-1 delayed-loss multiplexers by
emulating the departure process only. By discarding packets in advance, we proposed a self-routing
n-to-1 multiplexer that has a very simple control mechanism.

There are several research topics that need further investigation.

(i) Multiplexers for variable length packets: in this paper, we only considered packets of the same
size. In the current Internet, packets are of variable lengths and the problem of supporting variable
length packets in optical networks becomes important (see.e.g., [22], [19], [1]). In order to use the
fixed length multiplexers developed in our paper, segmentation and reassembly might be needed.
It might be of interest to develop an SDL unit that does segmentation and reassembly. A follow-up
paper is in [6].

(7) Scheduling policies other than FIFO: in order to achieve quality of service (QoS), more so-
phisticated scheduling policies, such as priority queues [15], [23], [17] and the earliest deadline first
policy, might be needed. Implementation of scheduling policies other than FIFO via switched delay
lines appears to be difficult.

APPENDIX
I. APPENDIX A

In this section, we prove Theorem 7.

As shown in Figure 8, let a1(t) (resp. ag(t)) be the state of the dotted (resp. undotted) input
of the prioritized concentrator at time ¢, by () (resp. by(t)) be the state of the lower (resp. upper)
output of the 2 x 2 switch at time ¢, and d(¢) (resp. £(¢)) be the state of the link for departing
(resp. lost) packets at time t. Also, let ¢;(f — 1) be the number of packet stored in the 2-to-1
multiplexer at time ¢ — 1 that is going to be connected to the 2 x 2 switch at time ¢ and g (¢t — 1)
be the number of packet stored in the other 2-to-1 multiplexer at time ¢ — 1. As there is one unit
delay line after the 2 x 2 switch in Figure 8, the state of the network element at time ¢ — 1 is the
3-vector (by(t —1),q1(t —1),q2(t — 1)).

Now we write down the governing equations for the network element. As the 2 x 2 switch is

connected to the two multiplexers alternatively, we have from (4)-(6) that

q2(t) = qu(t — 1) + 01(f = 1) + bo(t) — d(t) — £(1), (21)
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=q(t — 1), (22)
{ if qi(t —1) =by(t —1) = bo(t) =0 (23)

1 otherwise ’

if ¢q t—l) B and bl(t—l):bo(t):
0 otherwise

Let
qt—1) =q(t—1)+qt—-1)+bh(t-1) (25)

be the total number of packets stored in the network element at the end of the ¢ — 1** time slot.
According to the operation rule of the 2 x 2 switch, the switch is set to the cross state if ¢(t — 1)
is an odd number and is set to the bar state otherwise. From the operation rule of a prioritized
concentrator in Definition 3, the state of the upper input of the 2 x 2 switch is max[ag(t), a1 (¢)]

and the state of the lower input of the 2 x 2 switch is min[ag (), a1 (¢)]. Thus,

| maxag(t),a1(t)] if g(t —1) is odd
bi(t) = { min[aoo(t), all(t)] otl?lerwise ' (26)
Similarly,
_J minfag(t),a1(t)] if g(t —1)is odd
bo#) = { max[aoo(t), all (t)] otl?lerwise ' (27)

Now we show that the network element is a 2-to-1 multiplexer with buffer 2B + 1 by verifying the
four properties in Definition 4. Since arriving packets from the two input links are either stored in
the network element or transmitted through the two output links, flow conservation of the network
element is obviously satisfied. We will verify the other three properties by induction on ¢ with the
following additional induction hypothesis.

(P5) If we start from an empty system, i.e., b1(0) = ¢1(0) = ¢2(0), then
@2(t) < b () + qut) < get) +1, Vi (28)

In view of the induction hypothesis in (28), there are four possible cases as described below.
Case 1. (b1(t—1),q1(t —1),q2(t — 1)) = (0,0,0):
In this case, we have from (21)-(24) that

d(t) = bo(t), (29)
L(t) =0, (30)
22(t) =0, (31)
a1 (t) = 0. (32)
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In this case, ¢(t — 1) = 0. It then follows from (26) and (27) that

bo(t) = max[ap(t), aq(t)], (33)
b1 (t) = min[ay(t), a1 (t)], (34)

Observe that 0 < by(¢) < 1. Thus, the induction hypothesis in (28) follows from (31) and (32).

Since ¢(t — 1) = 0, there should be no packet loss at time ¢ for a 2-to-1 multiplexer with buffer
2B + 1. Equation (30) verifies this. Also, there should a packet departure at time ¢ if there is at
least one packet arrival at time ¢. This is shown by (29) and (33).

As q(t — 1) =0, the 2 x 2 switch is set to the bar state. It is easy to see that the virtual delay
for a1 (t) is 0 and the virtual delay for ag(t) is a1(t) so that the FIFO order is maintained.
Case 2. (bi1(t —1),q1(t —1),q2(t —1)) = (1, — 1,q) or (b1(t —1),q1(t — 1),¢2(t — 1)) = (0,¢,q) for
some 0 < ¢ < B:

In this case, we have from (21)-(24) that

d(t) = 1, (35)
0t =0, (36)
2(t) = g+ bo(t) — 1, (37)
¢ (t) = q. (38)

In this case, ¢(t — 1) = 2q and the 2 x 2 switch is set to the bar state. It then follows from (26)
and (27) that

bo(t) = max[ay(t), aq(t)], (39)
b1 (t) = minfag(t), a1 (t)], (40)

Thus,
bot) — 1 < by () < bo(0) (a1)

The induction hypothesis in (28) then follows from (41), (37) and (38).

Since 0 < q(t — 1) = 2q < 2B + 1, there should a packet departure at time ¢ and there should be
no packet loss at time ¢ for a 2-to-1 multiplexer with buffer 2B + 1. Equations (35) and (36) verify
these for this case.

Now we show that the virtual delay for a;(t) is ¢(t — 1). Since the 2 x 2 switch is set to the
bar state, a(t) is routed to the multiplexer with buffer B that is going to be connected at time ¢.
As this multiplexer with buffer B is operated under the FIFO policy, the number of packets that
should depart before ai(t) is ¢1(t — 1) + b1(t — 1) = ¢. Note that this multiplexer with buffer B
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is connected to the outputs every two time slots. Thus, the virtual delay of aq(t) is 2¢, which is
exactly ¢(t — 1). On the other hand, if a;(¢f) = 1, then ag(t) is routed to the multiplexer that is
going to be connected at time t + 1. As go(t — 1) = ¢, the virtual delay for a¢(t) = 2¢ + 1. Thus,
the FIFO order is maintained.
Case 3. (b1(t —1),q1(t —1),q2(t —1)) = (0,g + 1,q) or (b1(t —1),q1(t —1),¢2(t — 1)) = (1,q,q) for
some 0 < ¢ < B:

In this case, we have from (21)-(24) that

d(t) =1, (42)
L(t) =0, (43)
g2(t) = q + bo(?), (44)
q1(t) =g (45)

In this case, q(t — 1) = 2¢ + 1 and the 2 x 2 switch is set to the cross state. It then follows from
(26) and (27) that

bo(t) = min[ag(t), a1 (t)], (46)
b1 (t) = max[ag(t), a1 (t)], (47)

Thus,
bolt) < bi(t) < bolt) + 1. (48)

The induction hypothesis in (28) then follows from (48), (44) and (45).

Since 0 < q(t —1) = 2¢+ 1 < 2B + 1, there should a packet departure at time ¢ and there should
be no packet loss at time ¢ for a 2-to-1 multiplexer with buffer 2B + 1. Equations (42) and (43)
verify these.

Now we show that the virtual delay for a;(¢) is ¢(t — 1). Since the 2 x 2 switch is set to the cross
state, a1(t) is routed to the multiplexer with buffer B that is going to be connected at time ¢ + 1.
As the number of packets in this multiplexer is go(t — 1) = ¢, the virtual delay of a;(¢) is 2¢ + 1,
which is exactly ¢(¢t — 1). On the other hand, if a;(¢) = 1, then ao(t) is routed to the multiplexer
that is going to be connected at time ¢. As ¢i(t — 1) + b1 (t — 1) = ¢ + 1, the virtual delay for
agp(t) = 2q + 2. Thus, the FIFO order is maintained.

Case 4. (b1(t —1),q1(t —1),q2(t — 1)) = (1, B, B):

In this case, we have from (21)-(24) that

d(t) = 1, (49)



In this case, q(t — 1) = 2B + 1 and the 2 x 2 switch is set to the cross state. Thus, (46) and (47)
still hold. Since 0 < by(¢) < 1, the induction hypothesis in (28) then follows from (51) and (52).

Since g(t — 1) = 2B + 1, there should a packet departure at time ¢. This is shown in (49). On
the other hand, since the buffer is full, there should be a packet loss at time ¢ if two packets arrive
at time t. Equations (50) and (46) verify this.

Verification of the virtual delay is the same as that in Case 3.

II. APPENDIX B

In this section, we prove Theorem 14. The proof of Theorem 14 requires the following lemmas.
In Lemma 17, we first derive the governing equations for ¢;(¢), i = 1,...,n. To gain the intuition

of our proof, one may view ¢;(t)’s as the numbers of customers in the parallel queues in Figure 2.

Lemma 17 The quantities q;(t), i = 1,2,...,n, satisfy the following recursive equations:
gi(t) = min[g; 11 (t — 1) + ¢ (¢),B+1], i=1,2,...,n—1, (53)
and
gn(t) = minf(g1 (t — 1) + co(t) = 1)T, B]. (54)

Proof. We have from (11) and (13) that for i =1,...,n — 1,

n—i—1
gi(t) = minlg)(t) + > cipr(t—k),B+1]
k=0
n—i—2
= minlg),, (t—1) + D cipqr(t — L —k) +ci(t), B +1]
k=0
n—i—2

= minfgp(t —1) Z Cit1+k(t =1 —k) +¢i(t), B+ 1,B +1+¢(t)]

n—i—2

= min | minfg®, (¢ — 1) Z Ciron(t —1— k), B+ 1] +¢(t), B+ 1]
= min[g1(t —1) 4+ ¢(¢ ),B + 1].
Moreover, it follows from (12) and (13) that
¢u(t) = minfgy(t), B +1] = q(?)
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n—2

= min[(¢}(t— 1) + Y _ ekt —1—k) + co(t) — 1)*, B]

k=0
n—2
= min[(@(t 1) + 3 erpplt—1 = k) +eot) — 1), B, B+ co(t)]
k=0
n—2
— min [(min[q?(t D+ ekt =1 k), B+ 1]+ eolt) — 1)+,B]
k=0

— min(qu(t — 1) + co(t) — 1)*, B]

Lemma 18 shows that if the vector (g1(t — 1),q2(t — 1),...,qn(t — 1)) is in the most balanced
state, i.e., the difference between the largest element and the smallest element is at most 1, then
Rule R, behaves as if it is the join-the-shortest-queue policy and the state is still kept in the most

balanced state.

Lemma 18 If
at—1)2¢@t-1)>...2¢t-1)>qalt-1) -1, (55)

then under Rule R,

q(t—1)+co(t) > gt —1)+ci(t) > ...
> qn(t—1) +cn1(t) > q1(t — 1) + colt) — L. (56)

Proof. We define the function h(k,q(t — 1)) = k — q(t — 1) mod n. Then under Rule R,,, we have
ci(t) = bpiq-1) (), i=0,1,...,n—1. (57)

Note that for any fixed q(t—1), h(k,q(t—1)) is increasing with k, except when k = ¢(t—1)—1modn
at which h(k,q(t —1)) =n—1and h(k + 1,q(t — 1)) = 0.
We first show that

Giv1(t — 1) +¢i(t) > qigo(t — 1) + ci11(t), 1=0,1,...,n—2. (58)
Ifi # (¢(t — 1) — 1) mod n, then

Since b;(t) is decreasing in ¢ (b;()’s are the outputs from a prioritized concentrator), it then follows

that
ci(t) = bu(igt—1)) (1) = bu(it1,q(t-1))(t) = ciy1(t). (59)
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Hence, (58) follows from (55) and (59).
On the other hand, if i = (¢(t — 1) — 1) mod n, then we have from (55) that ¢;11(t — 1) =
gi+2(t — 1) + 1 for this case. This implies that

Git1(t —1) +ci(t) = gira(t — 1) + 1 +¢;(t)

> qiv2(t — 1) + i1 (t)

Now we show that

qn(t —1) +cn1(t) > qi(t — 1) + co(t) — 1. (60)
If g(t — 1) modn # 0, then h(n —1,q(t — 1)) < h(0,q(t — 1)). Since b;(t) is decreasing in 4, it then
follows that

cn—1(t) = bu(n—1,qt-1))(t) 2 br(0,qt—1))(t) = co(t).

That (60) holds then follows from the last inequality in (55). On the other hand, if ¢(¢ —1) modn =
0, then we have from (55) that q;(t — 1) = g2(t — 1) = ... = g, (¢t — 1). The inequality in (60) holds
trivially as 0 < ¢;(¢t) <1 for all j. [ |

Lemma 19 shows that Rule R, behaves as if it is the serve-the-longest-queue policy and the
state (q1(t),q2(t),...,qn(t)) is always kept in the most balanced state if the state is started from

an empty system.

Lemma 19 If the network element in Figure 14 is operated under Rule R, and it is started from

an empty system, then for all t > 0
Qi-l-l(t) SQl(t)a t=12,...,n—1, (61)
and
a1(t) < ga(t) + 1. (62)

Proof. Since we assume that the network element starts from an empty system, Eq. (61) and
(62) hold for t = 0. Now we assume that they hold for some ¢ — 1.

Using the induction hypotheses and Lemma 18, we have from (53) that ¢;(t) > gi+1(¢) for
i=1,...,n—2. To see that q,(t) + 1 > ¢1(t), observe from (54) that

¢(t)+1 = min[(q(t—1)+co(t) —1)",B] + 1
= min[(q1(t —1) +co(t) = )T +1,B +1]
> minfg(t — 1) + co(t), B +1].
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Once again, using the induction hypotheses, Lemma 18 and (53), we have that

qn(t)+1 > min[g1(t —1) + co(t), B+ 1]
> minfge(t — 1) +c1(t), B+ 1] = q1(%).

It remains to show that ¢,—1(t) > ¢,(t). Note from (54), the induction hypotheses, the last
inequality in (56), and (53) that

n(t) = minf(gi(t — 1) +co(t) — 1)", B]
< minf(gy(t - 1) + Cn—l(t))+a B]
= min[g,(t — 1) + cp—1(t), B]
< min[qn(t - 1) + Cnfl(t)aB + 1] = qnfl(t)'
|
(Proof of Theorem 14) We first show that ¢(t) satisfies the following recursive equation:
n—1 +
q(t) = min (q(t —-1)+ Z a;(t) — 1) ,n(B+1)—1]. (63)
i=0

Since the network element in Figure 14 is started from an empty system, we first consider the
case that q(t—1) = 0. If ¢(t—1) = 0, then ¢;(t—1) = 0 for all 7 and ¢;(¢t) = b;(¢),7=0,1,2...,n—1
(according to Rule R,,). Therefore, we have from (53) and (54) that

n n—1
Y a(t) = Y minfgi(t—1) +ci(), B+ 1]+ minf(qi (t — 1) + co(t) — 1)T, B]
i=1 i=1

n—1
= > bi(t)
i=1
We argue that
n—1 n—1
STbi(t) = (3 bit) — 1)* (64)
=1 1=0

To see this, note that (64) holds trivially if by(¢) = 1. On the other hand, if by(¢) = 0, then b;(t) = 0,
i=1,2,...,n—1, as by(t) is the largest element in b;(¢). Both sides of (64) equal 0. Using (64)

yields
n n—1
gt) =Y ai(t) = O bty -1n*
=1 1=0



= min[(a(t) — 1)",n(B +1) —1].

Thus, (63) holds for the case ¢(t — 1) = 0.
Now consider the case that g(t —1) > 0. As ¢;(¢ — 1) is the largest element in ¢;(¢ — 1),
i=1,2,...,n (Lemma 19), it follows that ¢ (¢t — 1) > 0. In conjunction with (54), we have

gn(t) = min[gi(t — 1) + ¢p(t) — 1, B] = min[q (¢t — 1) + co(t), B + 1] — 1. (65)

Thus, we have from (53) and (65) that

n n—1
g(t) = qi(t) = minfg;11(t — 1) + ci(t), B+ 1] — L. (66)
i=1 i=0
We argue that
n—1 n—1
> minfgii(t — 1) + ¢i(t), B+ 1] = min[» g1t — 1) + ci(t),n(B + 1)]. (67)
i=0 1=0

If q1(t—1)4co(t) < B+1, then it follows from Lemma 19 and Lemma 18 that ¢; 1 (t—1)+c¢;(t) < B+1
forall¢ =0,1,...,n— 1. Thus,

n—1
> min[giy1 (t — 1) + ci(t), B + 1]
=0
n—1
= gt —1) +clt)
=0
n—1
= min[)  gis1(t — 1) + ci(t),n(B + 1)].
=0

On the other hand, if ¢;(t — 1) +¢o(¢) > B + 2, then it follows from Lemma 19 and Lemma 18 that
gi+1(t—1)+¢i(t) > B+ 1foralli=0,1,...,n— 1. Thus,

n—1
Y minfgita(t = 1) +ci(t), B + 1]
=0
n—1
=Y B+1l=n(B+1)
=0
n—1
=min[) _ gis1(t — 1) + ci(t),n(B + 1)].
=0
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Using (67) in (66) yields
n

g(t) = > ailt)
i=1
n—1

= min[z giv1(t—1) +¢i(t),n(B+1)] -1
1=0

n n—1

= min)) gt —1)+ Y a(t),n(B+1)] -1
=1 =0

= minfg(t — 1) +a(t),n(B+1)] -1

= minfg(t —1) +a(t) —1,n(B+1)—1].

Thus, we have shown that ¢(¢) satisfies (63).
Now we show the non-idling property in (P2), i.e.,

d(t) = Lig(t—1)+a(r)>0} - (68)
From the non-idling property for the delayed-loss multiplexer connected to the outputs at time ¢,
it follows that

d(t) = Lig, (t=1)+eo(0)>0} -
Note that g1(t — 1) > 0 if and only if g(t — 1) > 0. Therefore, if ¢; (¢t — 1) > 0,

d(t) =1 = 1{g(4-1)+a(t)>0} -

On the other hand, if ¢;(¢t — 1) = q(t — 1) = 0, then ¢y(t) = bo(t) from Rule R,,. As by(t) is the
largest element in b;(t), s =0,1,...,n — 1, ¢o(¢) > 0 if and only if a(¢) > 0. Thus,

d(t) = 1icot)>0} = Lia(t)>0}-

Finally, we verify the departure order is FIFO in (P4). Without loss of generality, assume that

q(t —1) = mn + k for some m >0 and 0 < k <n — 1. From Lemma 19, it follows that
Qi(t_l):{ ZJFI llff-?iil’jﬁn '

Also, we have by(t) = cx(t) from Rule R,. From (53) and (54) in Lemma 17, ¢x(t) is added to
the end of ggy1(t — 1). Thus, the virtual delay for by(t) is ngg1(t — 1) +k = mn+k = q(t — 1)
as the n multiplexers are served in a round robin fashion. Similarly, if by(¢f) = 1, then bi(¢) is
added to the end of ggiomodn(t — 1). One can easily verify that the virtual delay for by(t) is
q(t — 1) + 1. Continuing the same argument shows that the virtual delay for b;(¢) is ¢(¢t — 1) + 3 if
bo(t) = bi(t) = ... =b;_1(t) = 1. Thus, the FIFO order is maintained. [ ]
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