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Abstract

In this paper, we propose a new construction for an optical 2-to-1 FIFO multiplexer by Switched
Delay Lines (SDL). We consider an �� ���� �� ��� crossbar switch and � fiber delay lines with
delay ��� ��� � � � � �� . These � fiber delay lines are connected from the � outputs of the crossbar
switch to the � inputs of the switch, leaving two inputs (resp. two outputs) of the switch for the two
inputs (resp. two outputs) of the 2-to-1 multiplexer. We show that such a construction can be operated
as a 2-to-1 FIFO multiplexer with buffer

��

���
�� if (i) the delay lines are chosen to satisfy �� � �

and �� � ���� � ���, � � �� �� � � � �� � �, and (ii) the routing of a packet is according to a specific
decomposition of the packet delay, called the �-transform in this paper.
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I. INTRODUCTION

To build high speed packet switches that scale with the speed of fiber optics, one needs to re-

solve conflicts of packets that compete for the same resources. Traditionally, such conflicts are

resolved by first converting optical packets into electronic packets, storing them in electronic

buffers, and then converting electronic packets back into optical packets. However, such an

approach incurs tremendous overheads in both the O-E conversion and the E-O conversion. As

such, there has been recent research interest in constructing optical buffers directly via optical

Switches and fiber Delay Lines (SDL).

The idea of using SDL for buffering is to distribute optical packets (by optical switches)

over fiber delay lines with various lengths so that packets that compete for the same resources

can be resolved. Early works in this direction include the feedback system by Karol [10]

and the CORD (contention resolution by delay lines) project [2], [3], [4]. Those early works

mainly focused on the feasibility of SDL, not on the theoretical aspect of SDL. In particular,

the feedback system in [10] was proposed for approximating a shared buffered switch. In

[13], [11], a genuine SDL design, named COD (Cascaded Optical Delay-Lines), is proposed

for exact emulation of 2-to-1 buffered First In First Out (FIFO) multiplexers by using � � �

crossbar switches and fiber delay lines. Though it is easy to control the switches in COD, the

cost in terms of the number of switches in COD is linear in the buffer size. In [8], a more

efficient design, called Logarithm Delay-Line Switch, is proposed for 2-to-1 buffered FIFO

multiplexers. The number of �� � switches needed for such an architecture is only �������,

where � is the buffer size. More recently, it is shown in [6] that there is a recursive method

for constructing a larger 2-to-1 buffered multiplexers by connecting smaller 2-to-1 buffered

multiplexers. The construction in [8] is a direct result of the recursive expansion in [6]. For

other related works in SDL, we refer to [9], [7], [15], [14] and references therein.

All the works on 2-to-1 buffered FIFO multiplexers are based on multistage construction

of SDL elements. In this paper, we consider a much simpler construction that only uses a

single optical switch with feedback as in [10], [12]. As in most works in the SDL literature,

we assume that packets are of the same size. Also, time is slotted and synchronized so that

every packet can be transmitted within a time slot. By so doing, packets can be “stored” in a

fiber delay line with the propagation delay being an integer multiple of time slots. As defined

in [6], a 2-to-1 buffered FIFO multiplexer is a network element with two input ports and two

output ports. One output port is for packet departure and the other is for packet loss (due to
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buffer overflow). Simultaneous arrivals at the two input ports require at least one of them being

“stored” at the multiplexer and then depart in the FIFO order. In other words, a 2-to-1 buffered

FIFO multiplexer is simply a FIFO queue with a finite buffer and two inputs. Since the service

policy is FIFO, the delay of a packet in a 2-to-1 buffered FIFO multiplexer is known upon its

arrival.
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Fig. 1. A 2-to-1 multiplexer with buffer
��

��� ��

To construct a 2-to-1 buffered FIFO multiplexer, in Figure 1 we consider an �����������

optical crossbar switch and � fiber delay lines with delay ��� ��� � � � � �� . The �� � �� �

�� � �� optical crossbar switch is capable of realizing all the �� � ��� permutations between

its inputs and outputs. The delay of these � fiber delay lines are chosen to satisfy �� 	 
 and

�� � ���� � ���, � 	 
� �� � � � �� � 
. Among the � � � outputs of the crossbar switch,

two of them are used as the output port and the loss port of the 2-to-1 multiplexer. The rest

of � outputs are connected to the � fiber delay lines with delay ��� ��� � � � � �� , respectively.

Similarly, among the � � � inputs of the crossbar switch, two of them are used as the two

inputs of the 2-to-1 multiplexer. The rest of � inputs are connected to the � fiber delay lines

that are fed back from the outputs.

As the delay of a packet is known upon its arrival, we will use packet delay for routing. Sup-

pose that the delay of packet that arrives at time � is 	. We first find out a specific decomposition

of 	 (called the �-transform of 	 in Section II) such that

	 	 ��� � ��� � � � �� ��� � (1)

with �� 
 �� 
 � � � 
 ��. The decomposition is started from the largest delay line, i.e., �� . If

	 is not smaller than �� , then the � �� delay line is selected. We then subtract �� from 	 and
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compare it with the second largest delay line ����. If the remaining value is still not smaller

than ����, the second largest delay line is also selected. The process is then repeated until we

have a decomposition of 	 as in (1). Note that the maximum delay that can be decomposed by

this approach is
��

��� ��. Thus, if a packet sees
��

��� �� packets in the 2-to-1 multiplexer upon

its arrival, the packet is lost and it is routed to the loss port immediately.

Unlike the decomposition, the routing of a packet with delay 	 is started from the smallest

delay line. Suppose that the packet delay 	 can be decomposed as in (1). The packet arriving

at time � is routed to the delay line with delay ��� at time �, the delay line with delay ��� at time

�� ��� , ..., and the delay line with delay ��� at time � �
����

��� ��� . By so doing, we achieve the

exact delay of that packet. The only problem left is whether there is a collision (i.e., more than

one packets are routed to the same fiber delay line at the same time).

The main contribution of our paper is to provide a formal proof to show that there is no

collision at any fiber delay line at any time under the assumption that the � fiber delay lines

are chosen to satisfy �� 	 
 and �� � ���� � ���, � 	 
� �� � � � ���
. Hence, our construction

is indeed an exact emulation of a 2-to-1 buffered FIFO multiplexer with buffer
��

��� ��. The

construction is more general than those in [8], [6] in the sense that there is no need to require

���� 	 ��� for all �. We also note that the same architecture (with a different assumption on the

delay lines and a different routing policy) was previously used in [12] to construct a priority

queue. Our proof requires to derive a minimum distance property and a maximum distance

property for packets that are routed to the same delay lines. These properties will be shown in

details in Section II. With the minimum distance property and the maximum distance property,

we then show that there is no collisions in Section III.

II. �-TRANSFORM

In this section, we introduce the �-transform that is used for obtaining the decomposition of

packet delay.

Definition 1 Consider an M-vector �� 	 ���� ��� � � � � ����� ��� with �� � N. Define a

mapping � � 	 � ��� 	 N 
� �� as follows:

��	� 	
�
���	�� ���	�� � � � � �����	�� ���	�

�
� (2)

where

���	� 	

�

 if 	 � ��
� otherwise

� (3)
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and for � 	 � � 
� � � � � �� 
,

���	� 	

�

 if 	�

��

����� ���	� 
 �� � ��
� otherwise

� (4)

We call ��	� the �-transform of 	 (with respect to �� ). To understand the intuition of the

�-transform, we note that the �-transform of 	 is in fact a decomposition of 	 (like the famous

Gram-Schmidt process [1]) and ��	� can be viewed as the coordinate vector of 	 with respect

to �� . In every step of this decomposition algorithm, we compare the remaining value from

the last iteration, i.e., 	 �
��

����� ���	� 
 �� with the relative element in �� , i.e., ��. If the

remaining value is large than or equal to the relative element of �� , we set the corresponding

element, i.e., ���	�, to 1. Otherwise, it is set to 0. For instance, if �� 	 �
� �� ��� � � � � �����,

then for all � � 	 � �� � 
, ��	� is simply the binary representation of 	 (from the least

significant bit to the most significant bit). To further illustrate the concept of the �-transform,

we carry out the decomposition for various packet delay in the following example.

Example 2 (�-transform) Consider the 
-vector �� 	 �
� �� �� �� 
��. Then the �-transform

of 	 for � � 	 � �� is shown in Table I.

Next, we define the inverse �-transform.

Definition 3 The inverse mapping ��� � �� 
� ��� 	 N is defined as follows:

���
�
��	�

�
	

��
���

���	� 
 ��� (5)

We call ���
�
��	�

�
the inverse �-transform of ��	�.

The inverse �-transform of ��	� is simply the summation of the product of �� and its coordi-

nate ���	�. For instance, if �� 	 �
� �� ��� � � � � �����, then for all � � 	 � �� � 
, we have

���
�
��	�

�
	 	 as ��	� is the binary representation of 	. However, in general, we may not

have

���
�
��	�

�
	 	 (6)

for any �� . Intuitively, one may view ���
�
��	�

�
as the “projection” of 	 onto �� . As we

shall see later in Section II-B that one needs an additional condition in �� to guarantee (6).
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	 ���	� ���	� ���	� ���	� ���	�
0 0 0 0 0 0
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 1 0 1 0 0
5 0 1 1 0 0
6 0 0 0 1 0
7 1 0 0 1 0
8 0 1 0 1 0
9 0 0 1 1 0
10 0 0 0 0 1
11 1 0 0 0 1
12 0 1 0 0 1
13 0 0 1 0 1
14 1 0 1 0 1
15 0 1 1 0 1
16 0 0 0 1 1
17 1 0 0 1 1
18 0 1 0 1 1
19 0 0 1 1 1
20 1 0 1 1 1
21 0 1 1 1 1
22 1 1 1 1 1

TABLE I

�-TRANSFORM OF �

A. General properties of the �-transform

In this section, we show some properties of the �-transform.

Lemma 4 Suppose that 	� � � N 	 ��� and 
 � � � � .

(i) � �
��

��� ���	� 
 �� � ������	�� � 	�

(ii) (Uniqueness)

��
���

���	� 
 �� 	
��
���

����� 
 �� �
 ��� ���� �
 ���	� 	 ������ � 	 �� � � 
� � � � ���

(iii) (Monotonicity) If � � 	 � �, then

��
���

���	� 
 �� �
��
���

����� 
 ���

(iv) If 	 	
��

��� ����� 
 �� for some �, then 	 	
��

��� ���	� 
 ��.
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As mentioned before, the �-transform behaves as if it were a projection of 	. Lemma 4(i)

says that the “projection” of 	 is not larger than 	 itself. The “uniqueness” result in Lemma

4(ii) says that if two “projections” are the same, then their “coordinates” are also the same. The

“monotonicity” result in Lemma 4(iii) shows that if 	 is not larger than �, then the “projection”

of 	 is also not larger than the “projection” of �. Finally, it is shown in Lemma 4(iv) that if 	

is a “projection” of �, then the “projection” of 	 is itself. The proof of Lemma 4 is shown in

Appendix A.

B. Unique representation of the �-transform

In this section, we show that under an additional assumption described in (A1) below, a

nonnegative integer 	 has an unique representation by the �-transform of 	.

(A1) Assume that �� 	 
, and �� � ���� � ���� � 	 
� �� � � � �� � 
.

To simplify our notation, we let

�� 	
��
���

��� (7)

Lemma 5 (Complete decomposition) Assume that (A1) holds. Then 	 	 ���
�
��	�

�
	��

��� ���	� 
 �� if and only if � � 	 � �� .

Lemma 5 implies that if � � 	 � �� , then 	 can be completely decomposed and represented

by ��	�. As such, ��	� can be viewed as the coordinate vector of 	 with respect to �� .

Proof. For the only if part, we prove it by contradiction. Suppose that 	 � �� . From (3) and

(4), it follows that ���	� 	 
 for all � 	 
� �� � � � �� . Thus,
��

��� ���	� 
 �� 	 �� 
 	 and

we have a contradiction.

For the if part, we prove it by induction on � . For � 	 
, we have � � 	 � �� 	 
. Thus,

	 is either 0 or 1. If 	 = 0, from (3) we have ����� 	 � and 	 	 � 	 ���	� 
 ��. If 	 = 1, from

(3) we have ���
� 	 
 and 	 	 
 	 ���	� 
 ��. Thus, the case with � 	 
 holds trivially.

Now we assume that if � � 	 � �� , then 	 	
��

��� ���	� 
 �� for some integer � � 
 as

the induction hypothesis. For � � 
, there are two cases:

Case 1. ���� � 	 �
����

��� �� 	 ���� �

In this case, from (3) we have �����	� 	 
. Since � � 	������	�
���� � ��������� 	

�� � According to the induction hypothesis, we have

	� �����	� 
 ���� 	
��
���

���	� �����	� 
 ����� 
 ���
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In view of (4), we note that ���	 � �����	� 
 ����� 	 ���	� for all � 	 
� �� � � � �� . It then

follows that

	 	
����
���

���	� 
 ���

Case 2. � � 	 
 ���� �

In this case, from (3) we have �����	� 	 �. Since we assume that �� 	 
 and �� � ���� �

��� for all � in (A1), it is easy to verify that

���� � ��� 	 �� � ��

� �� � ����� 	 �� � ���� � ����

� �� � ���� � �����

...

�
��
���

�� � �� 	
��
���

�� � 
� (8)

Thus, the condition � � 	 
 ���� implies that � � 	 �
��

��� �� 	 �� . As such, we can

apply the induction hypothesis to show that

	 	
��
���

���	� 
 ���

As �����	� 	 �, we then have

	 	
����
���

���	� 
 ���

From Lemma 4(ii) and Lemma 5, we have the following unique representation result for �-

transform.

Corollary 6 (Unique representation) Assume that (A1) holds. For all 	� � � ��� 	�� � �

	� � � �� , we have

	 	 � �
 ��� ���� �
 ��	� 	 �����

C. The concepts of �-partition points and �-clusters

In this section, we introduce the concepts of �-partition points and �-clusters under the �-

transform. Define the set

�� � �	 � ���	� 	 �� � 	 
� �� � � � � �� �	 � ��� 	� ��
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We call 	 an �-partition point if 	 � ��. For instance, �� in Example 2 is the set ��� �� 
�� 
��.

In the following lemma, we show several properties of �-partition points.

Lemma 7

(i) The minimum �-partition point is 0, i.e., ������� �	� 	 ��

(ii) The maximum �-partition point is
��

����� ��, i.e., ��������	� 	
��

����� ���

(iii) If 	 � ��, then 	 � ��, for all � 	 
� �� � � � � �.

(iv) If 	 	
��

����� ����� 
 �� for some �, then 	 is an �-partition point, i.e., 	 � ��.

Proof. Note that (i), (ii), and (iii) follows trivially from the definition of the �-partition points.

Here we only prove (iv). From Lemma 4(iv), we have 	 	
��

����� ���	� 
 ��� In view of (4),

we have �	�	� 	 �, for all � 	 
� �� � � � � �. Thus, 	 � ��.

Define

���	� 	 ���

����
��

��� (9)

as the �-partition point that is larger than 	. If 	 is also an �-partition point, then ���	� is the

next �-partition point. In the following lemma, we show that the last � � � coordinates of the

elements between two successive �-partition points are the same.

Lemma 8 Suppose that (A1) holds and that 	� � � ��� 	�, and 
 � � �� � 
.

(i) If 	 � ��, then the last � � � coordinated of 	 and ���	� cannot be the same, i.e.,

there exists an � (with �� 
 � � � � ) such that ���	� �	 ������	��.

(ii) If 	 � �� and � � 	 � � � ���	� � 
, then the last � � � coordinates of 	 and �

are the same, i.e.,

���	� 	 ������ � 	 �� 
� �� �� � � � ���

Proof. (i) Since 	 �	 ���	�, we have from the unique representation property in Corollary 6

that ��	� �	 �����	��. Since 	 and ���	� are both in ��, we know that ���	� 	 ������	�� 	

�� � 	 
� �� � � � � �. Therefore, there must exist � � 
 � � �� such that ���	� �	 ������	��.

(ii) We now prove ���	� 	 ������ � 	 � � 
� � � �� � � � �� for all 	 � �� and � � 	 � � �

���	�� 
. Since 	 � �, we have from the “monotonicity” result in Lemma 4(iii) that

��
�����

���	� 
 �� �
��

�����

����� 
 ��� (10)
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Let � 	
��

����� ����� 
 ��. As a result of Lemma 4(i), we know that � � �. Using Lemma

4(iv) yields

� 	
��

�����

����� 
 �� 	
��

�����

����� 
 ��� (11)

In conjunction with (10), we have

��
�����

���	� 
 �� �
��

�����

����� 
 ��� (12)

From Lemma 7(iv), we know that � is also an �-partition point, i.e., � � ��. Since 	 is assumed

to be an �-partition point, according to the definition of ���	� we also know that 	 is the largest

�-partition point that is not greater than �, i.e.,

	 	 ���

����
�


����

Since � � �� and � � �, we conclude that � � 	. It then follows from the “monotonicity”

result in Lemma 4(iii) that

��
�����

����� 
 �� �
��

�����

���	� 
 ��� (13)

Finally, in view of (11), (12) and (13), we have

��
�����

����� 
 �� 	
��

�����

���	� 
 �� 	
��

�����

����� 
 ���

The proof is completed by using the “uniqueness” result in Lemma 4(ii).

Note from Lemma 7(ii) that the largest �-partition point is
��

����� ��, i.e., ��������	� 	��

����� ��. Thus, for all � � � � �� , � is either not smaller than
��

����� �� or there is an

�-partition point 	 such that 	 � � � ���	�� 
. In other words, the �-partition points partition

the set ��� �� � into several segments. From Lemma 8, we know that the last � � � coordinates

of all the elements between two successive �-partition points are the same. In the following

lemma, we further identify the elements in each segment that has ����� 	 
.

Lemma 9 Suppose that (A1) holds and that � � � � �� . Then ����� 	 
 if and only if

� �
��

��� ��, or 	� �� � � � ���	�� 
, where 	 is an �-partition point (i.e., 	 � ��).

Proof. Since for all � � � � �� , � is either not smaller than
��

����� �� or there is an �-

partition point 	 such that 	 � � � ���	� � 
. Thus, We only need to consider the following
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two cases:

Case 1.
��

����� �� � � �

In this case, it is trivial to see that �	��� 	 
, � 	 � � 
� �� �� � � � �� . Thus,

� �
��

�����

����� 
 �� 	 � �
��

�����

�� � ��

if and only if � �
��

��� ��.

This then implies that

����� 	 
 �
 ��� ���� �
 � �
��
���

���

Case 2. 	 � � � ���	�� 
 for some 	 � ��:

From Lemma 8(ii), we know that

���	� 	 ������ � 	 �� 
� �� � � � � ���

Thus, we have
��

�����

���	� 
 �� 	
��

�����

����� 
 ��� (14)

Since 	 
 ���	� 
 �� and 	 is an �-partition point, we have from the complete decomposition

lemma (Lemma 5) that

	 	
��

�����

���	� 
 ��� (15)

Using (14) and (15) yields

� �
��

�����

����� 
 �� 	 � � 	� (16)

Thus, in this case ����� 	 
 if and only if � � 	 � ��.

In view of Lemma 8 and Lemma 9, we know that if 	 is an �-partition point, then for ��

and �� in �	 � ��� ���	� � 
� one has ������ 	 ������ 	 
 and ������ 	 ������ for � 	

� � 
� � � �� � � � �� . For this, we can define the concept of an �-cluster. An �-cluster is the set

of elements with ����� 	 
 and the same ����� for � 	 � � 
� � � �� � � � �� . From Lemma

9, it follows that �-clusters are either in the form �	 � ��� ���	� � 
� for an �-partition point

	 or the set �� �
��

��� ��� (see Figure 2). For the set �� �
��

��� ���, we have ����� 	 
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Pi
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kd0 SM
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Fig. 2. An illustration graph of �-clusters

for � 	 �� � � 
� � � � �� . The set �� �
��

��� ��� is called the last �-cluster. For instance, the

3-clusters in Example 2 are the sets ��� �� 
�, ���, �
�� 
�� 

� and �
�� ��� �
� ���.

In the following, we show two important properties of �-clusters that will be used in our proof

for the 2-to-1 optical multiplexers.

Lemma 10 (i) (Maximum distance within an �-cluster) Suppose that 	 and � are in the

same �-cluster that is not the last cluster. Then �	� �� � ���� � �� � 
.

(ii) (Minimum distance between two �-clusters) Suppose that 	 and � belong to two dif-

ferent �-clusters. Then �	� �� � �� � 
.

The proof of Lemma 10 is based on the following lemma on the minimum distance between

two successive �-points. The proof of Lemma 11 is given in Appendix B.

Lemma 11 Suppose that (A1) holds. For all � � �, the difference between two successive

�-partition points is not larger than ����, i.e.

�
 	 � ��� ���� ���	�� 	 � �����

for all 
 � � �� � 
.

Proof. (Lemma 10)

(i) Since the �-cluster being considered is not the last cluster, it must be the set �	���� ���	��


�, where 	 is an �-partition point. The result then follows directly from Lemma 11 that

�	� �� � ���	�� 
� 	� �� � ���� � �� � 
�

(ii) This is straightforward from Lemma 9.
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III. 2-TO-1 MULTIPLEXERS

In this section, we show how we construct a 2-to-1 optical buffered multiplexer. As in [6],

we assume that packets are of the same size. Also, time is slotted and synchronized so that

every packet can be transmitted within a time slot. The following definition was previously

introduced in [6].

Definition 12 (Multiplexer) A 2-to-1 multiplexer with buffer � is a network element with two

input ports and two output ports. One output port is for departing packets and the other is

for lost packets. Let ����� (resp. �����) be the number of arrival at time � from the first (resp.

second) input port, ���� be the numbers of departure at time �, ���� be the number of loss at time

�, and ���� be the number of packets queued at the multiplexer at time � (at the end of the ���

time slot). Then the 2-to-1 multiplexer with buffer � satisfies the following four properties:

(P1) flow conservation: arriving packets from the two input ports are either stored in the

buffer or transmitted through the two output ports, i.e.,

���� 	 ���� 
� � ����� � ������ ����� ����� (17)

(P2) Non-idling: there is always a departing packet if there are packets in the buffer or

there are arriving packets, i.e.,

���� 	

�
� if ���� 
� 	 ����� 	 ����� 	 �

 otherwise

� (18)

(P3) Maximum buffer usage: arriving packets are lost only when buffer is full, i.e.,

���� 	

�

 if ���� 
� 	 � and ����� 	 ����� 	 

� otherwise

� (19)

(P4) FIFO: packets depart in the First In First Out (FIFO) order.

As discussed in [6], a 2-to-1 multiplexer with buffer � is simply a FIFO queue with buffer

� in the queueing context. As such, it satisfies the Lindley recursion

���� 
� 	 ���
�
�������� � ����� 
� � ����� 
�� 
� ��� �

�
� (20)

Since the service policy is FIFO, one can deduce from the Lindley recursion that the delay of

the first (resp. second) packet arriving at time � � 
 is simply ���� (resp. ���� � 
). In other

words, the delay of a packet in a 2-to-1 multiplexer is known upon its arrival.
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As introduced in Section I, our construction (in Figure 1) consists of an �� � ��� �� � ��

optical crossbar switch and � fiber delay lines with delay ��� ��� � � � � �� that satisfies the

assumption (A1), i.e., �� 	 
 and �� � ���� � ���, � 	 
� �� � � � �� � 
. Among the � � �

outputs of the crossbar switch, two of them are used as the output port and the loss port of the

2-to-1 multiplexer. The rest of � outputs are connected to the � fiber delay lines with delay

��� ��� � � � � �� , respectively. Similarly, among the � � � inputs of the crossbar switch, two of

them are used as the two inputs of the 2-to-1 multiplexer. The rest of � inputs are connected

to the � fiber delay lines that are fed back from the outputs.

As the delay of a packet is known upon its arrival, we use packet delay for routing. Suppose

that the delay of a packet that arrives at time � is 	. We first find out the �-transform of 	

(described in the previous section). The packet will be routed to the delay line with delay �� at

� �
����

��� ���	� 
 �� if ���	� 	 
. Specifically, it will be routed to the delay line with delay ��

at time � if ���	� 	 
, and it will be routed to the delay line with delay �� at time �� ���	��� if

���	� 	 
, ... By so doing, if 	 � �� , then we have from Lemma 5 that 	 	
��

��� ���	� 
 ��

and we achieve the exact delay of that packet. Note that the maximum delay for a packet is

�� and this corresponds to a FIFO queue with buffer �� . Arrivals that see �� packets in

the 2-to-1 multiplexer are routed to the loss port. If there is no collision under such a routing

policy, then our construction achieves the exact emulation of a 2-to-1 multiplexer. This is what

we would like to show in the next theorem.

Theorem 13 Suppose that our construction of the 2-to-1 multiplexer is started from an empty

system. Under the routing policy, there is no collision at any fiber delay line at any time.

Proof. Without loss of generality, packets that are lost due to buffer overflow can be excluded.

It suffices to show that there is no collision in a busy period (of the FIFO queue) for the packets

that are admitted to the queue. Consider two packets in the same busy period. Suppose that

the ���� (resp. ���� ) packet arrives at time �� (resp. ��) with delay 	� (resp. 	�). Without loss of

generality, assume that �� 
 ��. and �� � ��. As both packets arrive in the same busy period,

we have from the Lindley recursion in (20) that

	� 	 	� � ��� � ���� ��� � ���� (21)

Moreover, as there are at most two arrivals in a time slot for the 2-to-1 multiplexer, we have

�� � �� � ���� � ��� � 
� (22)
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In conjunction with (21), it then follows that

	� � 	� � �� � �� � 
� (23)

To ease our presentation, we first prove that there is no collision at ��� fiber delay line, for

� 	 
� �� � � � �� � 
 (� � �) under the additional condition �� �	 ����. As a packet with delay

	 is routed to the ��� delay line only when ���	� 	 
, we only need to consider packets with

delay in the �-clusters. Note from the routing policy that packet �� (resp. ��) will arrive at the

��� fiber delay line at �� �
����

��� ���	�� 
 �� (resp. �� �
����

��� ���	�� 
 ��). From Lemma 5, it

follows that packet �� (resp. ��) will arrive at the ��� fiber delay line at ���	��
��

��� ���	��
��

(resp. �� � 	� �
��

��� ���	�� 
 ��).

Case 1. 	� and 	� are in the same �-cluster:

Since 	� and 	� are in the same �-cluster, we have ���	�� 	 ���	�� for all � 	 �� ��
� � � � �� .

Thus, the difference of the arrival times of these two packets at the ��� fiber delay line is

�� � 	� �
��
���

���	�� 
 �� � ��� � 	� �
��
���

���	�� 
 ���

	 �� � �� � �	� � 	��

	 �� � �� � 
�

where we use (21) in the last identity.

Case 2. 	� and 	� are in different �-clusters and 	� 
 	�:

Note that the difference of the arrival times of these two packets at the ��� fiber delay line is

�� � 	� �
��
���

���	�� 
 �� � ��� � 	� �
��
���

���	�� 
 ���

� �� � �� � �	� �
��
���

���	�� 
 ���

� 	� � 	� � 
� �	� �
��
���

���	�� 
 ���� (24)

where we use Lemma 4(i) in the first inequality and (23) in the second inequality.

Since 	� and 	� are in different �-clusters and 	� 
 	�, we have from Lemma 10(ii) that

	� � 	� � �� � 
� (25)

Let 	� 	
��

��� ���	�� 
 ��. From Lemma 4(iv), we know that 	� 	
��

��� ���	�� 
 ��. As a

result of Lemma 4(ii), we have ���	�� 	 ���	�� for � 	 �� � � 
� � � � �� . Thus, 	� and 	� are
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in the same �-cluster. Since 	� and 	� are in different �-clusters and 	� 
 	�, 	� is not in the

last �-cluster. It then follows Lemma 10(i) that

	� � 	� � ���� � �� � 
� (26)

Using (25) and (26) in (24) yields

�� � 	� �
��
���

���	�� 
 �� � ��� � 	� �
��
���

���	�� 
 ���

� 	� � 	� � 
� �	� �
��
���

���	�� 
 ���

� ��� � ���� � 


� 
�

where we use the assumption ���� � ��� in the last inequality.

Case 3. 	� and 	� are in different �-clusters and 	� 
 	�:

For this case, we have from (21) that the difference of the arrival times of these two packets

at the ��� fiber delay line is

�� � 	� �
��
���

���	�� 
 �� � ��� � 	� �
��
���

���	�� 
 ���

	 ��� � ��� �
��
���

���	�� 
 �� �
��
���

���	�� 
 ��� (27)

Since 	� 
 	�, we have from the “monotonicity” result in Lemma 4(iii) that

��
���

���	�� 
 �� �
��
���

���	�� 
 ���

It then follows that

�� � 	� �
��
���

���	�� 
 �� � ��� � 	� �
��
���

���	�� 
 ���

� �� � �� � 
�

It remains to consider the case for the � �� fiber delay line and the case with �� 	 ����. For

each of these two cases, there exists only an �-cluster, i.e., the last �-cluster. As such, they can

be proved in a similar manner to Case 1.

In the following, we show by a counterexample that there is a collision if (A1) is not satisfied.
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Example 14 (A counterexample for the case with �	�� � ��	) In this example, we show

that there is a collision at ��� fiber delay line if �� 	 
, �� � ���� � ���, � 	 
� �� � � � � � � 
,

and �	�� � ��	.

As in Theorem 13, we start from an empty system, i.e., ���� 	 �. Consider the sample path

that has two arrivals in every time slot, i.e., ����� 	 ����� 	 
 for all � � 
. As the multiplexer

is always backlogged, it is easy to see from the Lindley recursion in (20) that the delay of the

first (resp. second) packet arriving at time � is �� 
 (resp. �).

Consider two time slots �� and �� with

�� 	 �	�� �
��

��	��

�� (28)

and

�� 	 �� � ��	�� � 
� �
�	�� � 


�
��� (29)

We will show that the first packet that arrives at �� will collide with a packet that arrives at ��

at the ��� fiber delay line.

Note that the delay of the first packet that arrives at �� is �� � 
. Moreover,

�� � 
 	 �	�� � 
 �
��

��	��

�� (30)

	 ��	�� � �	 � 
� � �	 �
��

��	��

��� (31)

Since we assume that �	�� � ��	, we have �	�� � �	 � 
 � �	 � 
 � �. According to (3) and

(4), we know from (30) and (31) that �	��� � 
� 	 
, �	����� � 
� 	 �, and ����� � 
� 	 
,

� 	 � � �� � � �� � � � �� . Using these in (31) yields

�� � 
 	 ��	�� � �	 � 
� �
��
��	

����� � 
� 
 ��� (32)

From the routing policy and the complete decomposition property in Lemma 5, we know that

this packet is routed to the ��� fiber delay line at time

�� �

	���
���

����� � 
� 
 ��

	 �� � ��� � 
��
��
��	

����� � 
� 
 ��

	 �� � ��	�� � �	 � 
�� (33)
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where we use (32) in the last identity.

Suppose that �	�� is an odd number. Consider the second packet that arrive at time ��. In

view of (28) and (29), the delay of that packet is

�� 	 �� � ��	�� � 
�
�	�� � 


�
�

	 �
�	�� � 


�
� �	� �

��
��	

��� (34)

Since we assume that �	�� � ��	,
������

�
� �	 � �. We then have from (3) and (4) that

������ 	 
 for all � 	 �� � � 
� � � � �� . Using these in (34) yields

�� 	 �
�	�� � 


�
� �	� �

��
��	

������ 
 ��� (35)

Note that this packet is routed to the ��� fiber delay line at time

�� �

	���
���

������ 
 ��

	 �� � ��� �
��
��	

������ 
 ���

	 �� � �
�	�� � 


�
� �	� (36)

	 �� � ��	�� � �	 � 
�� (37)

where we use (35) in (36) and (29) in (37). Thus, the second packet arriving at �� collides with

the first packet arriving at �� at the ��� fiber delay line at time �� � ��	�� � �	 � 
�.

On other hand, if �	�� is an even number, we then consider the first packet that arrive at time

��. In view of (28) and (29), the delay of that packet is

�� � 
 	 �� � ��	�� � 
� �
�	�� � 


�
�




�
��� 


	 �� �
�	��

�
� 
 (38)

	 �
�	��

�
� �	 � 
� �

��
��	

��� (39)

Since we assume that �	�� � ��	,
����
�

� �	 � 
 � �. It then follows from (3) and (4) that

����� � 
� 	 
 for all � 	 �� � � 
� � � � �� . Using these in (39) yields

�� � 
 	 �
�	��

�
� �	 � 
� �

��
��	

����� � 
� 
 ��� (40)
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Note that this packet is routed to the ��� fiber delay line at time

�� �

	���
���

����� � 
� 
 ��

	 �� � ��� � 
�
��
��	

����� � 
�� 
 ��

	 �� � �
�	��

�
� �	 � 
� (41)

	 �� � ��	�� � �	 � 
�� (42)

where we use (40) in (41) and (38) in (42). In this case, the first packet arriving at �� also

collides with the first packet arriving at �� at the ��� fiber delay line at time �����	����	�
�.

IV. CONCLUSIONS

In this paper, we proposed a construction for an optical 2-to-1 FIFO multiplexer by switched

delay lines. We considered an �� � �� � �� � �� crossbar switch and � fiber delay lines

with delay ��� ��� � � � � �� . These � fiber delay lines are connected from the � outputs of the

crossbar switch to the � inputs of the switch, leaving two inputs (resp. two outputs) of the

switch for the two inputs (resp. two outputs) of the 2-to-1 multiplexer. Moreover, these �

delay lines are chosen to satisfy �� 	 
 and �� � ���� � ���, � 	 
� �� � � � �� � 
. As the

delay of a packet in a 2-to-1 multiplexer is known upon its arrival, the packet delay is used

for routing a packet through the � fiber delay lines. For this, we proposed the �-transform

to decompose the packet delay. We showed that there are a minimum distance property and a

maximum distance property for the �-transform, and they were then be used for showing that

there is no collision at any fiber delay line at any time under our routing policy. As such, we

achieved an exact emulation of a 2-to-1 multiplexer with buffer
��

��� ��.

Our immediate future work is to extend 2-to-1 multiplexers to � -to-1 multiplexers. For this,

we will consider multistage constructions, instead of the single stage construction in this paper.

Results along this line will be reported separately.

APPENDIX

A.

In this appendix, we prove Lemma 4.

(i) From (3), we have

	 � ���	� 
 �� � �� (43)
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According to (4), we also have

	�
��

�����

���	� 
 �� � ���	� 
 ���

Thus,

	 �
��
���

���	� 
 �� � �� � 	 
� �� � � � �� � 
� (44)

That (i) holds then follows from (43) and (44).

(ii) The if part is trivial. For the only if part, we will prove it by contradiction. Suppose

that there exists an � (with � � � � � ) such that ���	� �	 ����� and ���	� 	 ����� for

� 	 �� 
� � � � �� .

From the if part, we know that

��
�����

���	� 
 �� 	
��

�����

����� 
 ��� (45)

Here we use the convention that a summation is 0 if its lower index is larger than its upper

index. Without loss of generality, assume that 	 � �. Thus,

	�
��

�����

���	� 
 �� � � �
��

�����

����� 
 ��� (46)

Since ���	� �	 �����, we know from (4) and (46) that

	�
��

�����

���	� 
 �� 
 ��� (47)

and � �
��

����� ����� 
 �� � ��� Therefore we have ����� 	 
. From Lemma 4(i), it follows

that
��
���

���	� 
 �� � 	 	 �	�
��

�����

���	� 
 �� � �
��

�����

���	� 
 ��� (48)

Using (47) and (45) in (48) yields

��
���

���	� 
 ��


 �� �
��

�����

���	� 
 ��

	 �� �
��

�����

����� 
 ��

	
��
���

����� 
 ��� (49)
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where we use the fact ����� 	 
 in the last identity. Since ���	� and �� are nonnegative, we

have from (49) that

��
���

���	� 
 �� 

��
���

����� 
 �� �
��
���

����� 
 ���

This contradicts to the assumption that
��

��� ���	� 
 �� 	
��

��� ����� 
 ��.

(iii) We prove this by induction on � . There are three cases for � 	 
:

Case 1. � � 	 � � 
 �� �

In this case, we have from (3) that ���	� 	 ����� 	 �. Thus, ���	� 
 �� 	 ����� 
 �� 	 ��

Case 2. � � 	 
 �� � � �

In this case, we have from (3) that ���	� 	 �� ����� 	 
� Thus, ���	� 
 �� 	 � 
 ����� 
 �� 	

���

Case 3. �� � 	 � � �

In this case, we have from (3) that ���	� 	 ����� 	 
. Thus, ���	� 
 �� 	 ����� 
 �� 	 ���

Now we assume that (iii) holds for some integer � � 
. For � � 
, there are also three

cases:

Case 1. � � 	 � � 
 ���� �

In this case, we have from (3) that �����	� 	 ������� 	 �. Since � � 	 � �� it follows

from the induction hypothesis that

��
���

���	� 
 �� �
��
���

����� 
 ���

Thus, we have
����
���

���	� 
 �� �
����
���

����� 
 ���

Case 2. � � 	 
 ���� � � �

In this case, we have from (3) that �����	� 	 �� ������� 	 
. From Lemma 4(i), we have

����
���

���	� 
 �� � 	


 ���� 	 ������� 
 ����

�
����
���

����� 
 ���

Case 3. ���� � 	 � � �
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In this case, we have from (3) that �����	� 	 ������� 	 
. Since

� � 	� �����	� 
 ���� � � � ������� 
 �����

we also have from the induction hypothesis that

��
���

���	� �����	� 
 ����� 
 �� �
��
���

���� � ������� 
 ����� 
 ���

Note from (4) that ���	 � ����� 	 ���	� and ���� � ������� 
 ����� 	 ����� for all � 	


� �� � � � �� . Thus,
����
���

���	� 
 �� �
����
���

����� 
 ���

(iv) We also prove this by induction on � . For � 	 
, we have 	 	 ����� 
 ��. There are

two cases:

Case 1. ����� 	 � �

In this case, we know 	 	 �. From (3), ���	� 	 �. Thus, we have 	 	 � 	 ���	� 
 ���

Case 2. ����� 	 
 �

In this case, we know 	 	 ��. From (3), ���	� 	 
� Thus, we have 	 	 �� 	 ���	� 
 ���

Now we assume that (iv) holds for some integer � � 
. For � � 
. There are also two

cases:

Case 1. ���� � 	 �

Note from (i) of this lemma that 	 � �. Thus, we have from (3) that �����	� 	 ������� 	


. Since 	 	
����

��� ����� 
 ��, it follows that 	� ���� 	
��

��� ����� 
 ��. From the induction

hypothesis, we then have

	� ���� 	
��
���

���	� ����� 
 ���

Note from (4) that ���	 � ����� 	 ���	� for all � 	 
� �� � � � �� . As �����	� 	 
, it then

follows that 	 	
����

��� ���	� 
 ��.

Case 2. � � 	 
 ���� �

In this case, we have from (3) that �����	� 	 �. Since 	 	
����

��� ����� 
 �� 
 ����, we

know that ������� must be 0 and thus 	 	
��

��� ����� 
 ��. From the induction hypothesis, it
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then follows that

	 	
��
���

���	� 
 ���

As �����	� 	 �, we have 	 	
����

��� ���	� 
 ��.

B.

In this appendix, we prove Lemma 11. We prove this lemma by induction on� . For� 	 �,

there are only two cases:

Case 1. �� 	 
� �� 	 
 �

In this case, �� 	 ��� 
�. Thus, 
� � 	 
 	 ��.

Case 2. �� 	 
� �� 	 � �

In this case, �� 	 ��� ��. Thus, �� � 	 � 	 ��.

From these two cases, we have shown that ���	�� 	 � ���� for � 	 � and 	 � ��.

We assume that this lemma holds for some integer � � � as the induction hypothesis. Now

we consider the case with M+1. First, note that �� 	 ��� ����� and thus ������ 	 ����� It

remains to show that ���	��	 � ���� for � 	 
� �� � � � �� � 
. To prove this via the induction

hypothesis, we will establish the relationship between the set of �-partition points with respect

to the � -vector �� 	 ���� ��� � � � � ��� and the set of �-partition points with respect to the

��
-vector���� 	 ���� ��� � � � � �� � �����. To do this, we let ��
� 	 �	���� 	���� � � � � 	�����

� ��

(with 	��	 
 	��	��) be the set of �-partition points with respect to the � -vector �� and

����
� 	 ������ ����� � � � � ��������

�
�� (with ���	 
 ���	��) be the set of �-partition points with

respect to the � � 
-vector ����.

Since ���� is in ����
� , we have from Lemma 7(iii) that ���� is also in ����

� , for all

� 	 
� �� � � � �� . Without loss of generality, let us assume that ���� 	 ����� for some ��,

where 
 
 �� 
 �����
� �. We claim that ����

� can be obtained from ��
� as follows:

�����	����
 	 	��� � ����� � 	 
� �� � � � � ���
� �� (50)

and

���� 	 	���� � 	 
� �� � � � � �� � 
� (51)

To see (50), consider an � in ����
� . Note that if � � ����, then it follows from (3) that

������� 	 
. Thus, � � ������� 
 ���� 	 � � ����. Clearly, if � � ���� is in ��
� , then �

is in ����
� . On the other hand, if � 
 ����, then it follows from (3) that ������� 	 �. Thus,
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� � ������� 
 ���� 	 �. It is trivial to note that if � is in ��
� , then it is also in ����

� . In

Figure 3, we depict the relationship between ��
� and ����

� .

0
∑

+=

M

1ik
kd

d 1M+

SM

S 1M+0

0 ∑
+=

M

1ik
kd

d 1M+

SM

S 1M+0 ∑
+

+=

1M

1ik
kd

∑
+

+=

1M

1ik
kd

(a)

(b)

Fig. 3. The relationship of ��
� and ����

� : (a)
��

����� �� � ���� (the upper figure) and (b)
��

����� �� � ���� (the
lower figure)

From the induction hypothesis and (50) and (51), we know that

���	 � ���	�� 	 	��	 � 	��	�� � ����� (52)

for � �	 ��.

It remains to show that ����� � ������� � ����. For this, we need to consider the following

two cases:

Case 1. 	�����
� � 
 ����� �

In this case, we have from Lemma 7(ii) that 	�����
� � 	

��

����� �� 	 �������. Since �	�� �

��	 for all �, it is straightforward to see that

���� � ���� �
��

�����

���

Thus,

����� � ������� 	 ���� �
��

�����

�� � ���� (53)

Case 2. 	����� 
 ����� � 	��� for some 
 
 � � ���
� � �

In this case, we have 	����� 	 �������. It then follows from the induction hypothesis that

����� � ������� � 	��� � 	����� � �����
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