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Abstract

Constructions of optical queues by optical Switches and fiber Delay Lines (SDL) have received a lot of

attention lately. In this short paper, we provide a simple proof for the construction of a priority queue with a

switch and fiber delay lines in Sarwate and Anantharam [10]. Our proof not only gives the insights needed

to understand why such a construction works, but also leads to a much general result that recovers the result

in [10] as a special case. Moreover, our result can be easily extended to the constructions of priority queues

with multiple inputs. Such constructions appear to be new in the literature.
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I. INTRODUCTION

Queues are commonly used as a mean to resolve conflicts for people who compete for the same resources.

Constructing a queue for people might be as easy as writing down a name list. However, constructing a

queue for non-stopping photons appears to be a challenging problem. The need for constructing optical

queues that store optical packets (composed of a train of photons) is driven by the recent advances in optical

transmission technologies. As the transmission speed of optical links has been increased so rapidly, the

traditional approach of converting optical packets back to electronic packets and storing packets in electronic

memories becomes very costly.

One common approach to construct optical queues is to use optical Switches and fiber Delay Lines (SDL).

The idea of using SDL for constructing an optical queue is to route (non-stopping) optical packets through a

series of fiber delay lines so that optical packets depart from the queue at the right time. Early works, mainly

focusing on the feasibility of SDL, include the feedback system by Karol [1] and the CORD (COntention

Resolution by Delay lines) project [2]. In the past decade, researchers have made significant progresses

in the mathematical theory of constructing several types of optical queues, including multiplexers in [3],

[4], [5], [6], [7], FIFO queues in [8], non-overtaking delay lines and flexible delay lines in [9], and priority

queues in [10].
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Fig. 1. A construction of a priority queue via a single switch and fiber delay lines.

Our main interest of this paper is the constructions of optical priority queues. Sarwate and Anantharam

[10] considered a feedback system in [1] (see Figure 1). In such a feedback system, there is an (M + 1) ×
(M + 1) crossbar switch and M fiber delay lines with delays di, i = 1, 2, . . . ,M . If M = 2k − 1 for
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some positive integer k, di = i for i = 1, . . . , k, and di = 1 for i = k + 1, . . . , 2k − 1, then it was shown

in [10] that such a system can be used for exact emulation of a priority queue with buffer
∑k

i=1 di. Our

main contribution in this paper is to provide a much simpler and shorter proof than that given in [10]. Our

proof not only gives the insights needed to understand why such a construction works, but also leads to a

much general result that recovers the choice of the delays of the M fiber delay lines in [10] as a special case.

Moreover, our result can be easily extended to the constructions of priority queues with multiple inputs.

Such constructions appear to be new in the literature.

II. PRIORITY QUEUES AND COMPLEMENTARY PRIORITY QUEUES

As our constructions of optical queues are based on optical Switches and fiber Delay Lines (SDL), we

first introduce some basic assumptions and concepts for SDL. As in most papers on SDL in the literature,

we consider fixed size packets over optical links. Assume that time in all our optical links is slotted and

synchronized so that a packet can be transmitted within a time slot. A fiber delay line with delay d is an

optical link that requires d time slots for a packet to traverse through. Specifically, if a packet arrives at the

input of a fiber delay line with delay d at time t (the tth time slot), the packet will depart from the fiber delay

line at time t + d. An M ×M crossbar switch is a network element with M input links and M output links

that realizes all the M ! permutations between its inputs and outputs.
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Fig. 2. A priority queue with buffer B.

In the following, we define a (discrete-time) priority queue with buffer B.

Definition 1 (Priority queue) A priority queue with buffer B is a network element that has one input link,

one control input link, and two output links (see Figure 2). One output link is for departing packets and the

other is for lost packets. When a packet arrives at the queue, it is associated with a label, called priority.

We assume that there is a total order for the priorities of all the packets. As shown in Figure 2, let c(t) be

the state of the control input at time t. When c(t) = 1, we say the priority queue is enabled at time t. On the

other hand, the priority queue is disabled at time t if c(t) = 0. Also, let a(t) be the set of the packet arriving

at time t (if any1), d(t) be the set of the packet departing at time t (if any), �(t) be the set of the lost packet

1This means that a(t) is an empty set if there is no packet arriving at time t, and is a singleton otherwise.
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at time t (if any), and q(t) be the set of packets queued at the priority queue at time t (at the end of the tth

time slot). Then the priority queue with buffer B satisfies the following five properties:

(P1) Flow conservation: arriving packets from the input link are either stored in the buffer or transmit-

ted through the two output links, i.e.,

q(t) = q(t − 1) ∪ a(t)\(d(t) ∪ �(t)). (1)

(P2) Non-idling: if the control input is enabled, i.e., c(t) = 1, then there is always a departing packet

if there are packets in the buffer or there is an arriving packet, i.e.,

|d(t)| =
{

1 if c(t) = 1 and |q(t − 1) ∪ a(t)| > 0
0 otherwise

. (2)

(P3) Maximum buffer usage: if the control input is not enabled, i.e., c(t) = 0, then there is a lost packet

only when buffer is full and there is an arriving packet, i.e.,

|�(t)| =
{

1 if c(t) = 0 and |q(t − 1) ∪ a(t)| > B
0 otherwise

. (3)

(P4) Priority departure: if there is a departing packet at time t, the departing packet is the one with the

highest priority among all the packets in q(t − 1) ∪ a(t).

(P5) Priority loss: if there is a lost packet at time t, the lost packet is the one with the lowest priority

among all the packets in q(t − 1) ∪ a(t).
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Fig. 3. A complementary priority queue.

To construct a priority queue, one needs to verify the five properties (P1)–(P5) in Definition 1. In the

following, we introduce a complementary priority queue that reduces these five properties into two simple

properties. As such, it is much easier to verify a construction of a complementary priority queue.

Definition 2 (Complementary priority queue) A complementary priority queue with buffer B is a network

element that has one input link, one control input link, and one output link (see Figure 3). As in a priority

queue, every packet is associated with a label, called priority, and there is a total order for the priorities.

At time 0, there are B packets stored in the network element. Unlike a priority queue, there is always an
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arriving packet and a departing packet in every time slot. As shown in Figure 3, let c(t) be the state of the

control input, a(t) be the set of the packet arriving at time t, b(t) be the set of the packet departing at time

t, and qc(t) be the set of packets queued at the complementary priority queue at time t (at the end of the tth

time slot). Then the complementary priority queue with buffer B satisfies the following two properties:

(C1) Flow conservation: arriving packets from the input link are either stored in the buffer or transmit-

ted through the the output link, i.e.,

qc(t) = qc(t − 1) ∪ a(t)\b(t). (4)

(C2) Complementary priority departure: if c(t) = 1, then the departing packet is the one with the

highest priority among all the packets in qc(t− 1) ∪ a(t). On the other hand, if c(t) = 0, then the

departing packet is the one with the lowest priority among all the packets in qc(t − 1) ∪ a(t).
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Fig. 4. A construction of a priority queue with buffer B via a concatenation of a complementary priority queue with buffer B and
a 1 × 2 switch.

Clearly, a complementary priority queue and a priority queue are closely related. This is further clarified

in Proposition 3 below.

Proposition 3 As shown in Figure 4, a priority queue with buffer B can be constructed by a concatenation

of a complementary priority queue with buffer B and a 1 × 2 switch.

Proof. The key is to view empty time slots as fictitious packets that have priorities lower than those

of real packets. Moreover, the priorities among the fictitious packets are decreasing in the order of their

arrival times. As such, we have a total order among all the packets, including both the real packets and the

fictitious packets. To emulate an empty priority queue at time 0, we can store B fictitious packets in the

complementary priority queue.

Now we consider the following two cases.

Case 1. c(t) = 1:

In this case, we connect the input of the 1 × 2 switch to d(t) in Figure 4. The complementary priority

queue selects the packet with the highest priority among all the packets in qc(t− 1) ∪ a(t), where qc(t − 1)

is the set of packets stored in the complementary priority queue at the time t − 1. If there is a real packet in
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qc(t− 1)∪ a(t), then d(t) contains a real packet as fictitious packets have priorities lower than those of real

packets. Moreover, this packet is the one with the highest prioity. Thus, (P2) and (P4) in Definition 1 are

satisfied.

Case 2. c(t) = 0:

In this case, we connect the input of the 1 × 2 switch to �(t) in Figure 4. The complementary priority

queue selects the one with the lowest priority among all the packets in qc(t−1)∪a(t). If there is a fictitious

packet in qc(t − 1) ∪ a(t), then �(t) contains a fictitious packet (an empty time slot) as fictitious packets

have priorities lower than those of real packets. If there is no fictitious packet in qc(t − 1) ∪ a(t), then

�(t) contains a real packet and this real packet is the one with the lowest priority. Thus, (P3) and (P5) in

Definition 1 are also satisfied.

III. A CONSTRUCTION OF A COMPLEMENTARY PRIORITY QUEUE
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Fig. 5. A construction of a complementary priority queue with buffer
∑M

i=1 di.

In Figure 5, we show a construction of a complementary priority queue with buffer
∑M

i=1 di. In our

construction, there are two (M + 1) × (M + 1) crossbar switches: a sorter (on the left hand side) and a

shifter (on the right hand side). The key insight of our construction is based on the following assumption:

(A1) All the packets stored in all the fiber delay lines in Figure 5 cannot be either the packet with the

highest priority or the packet with the lowest priority until they appear at the inputs of the sorter.



6

If (A1) holds, then the packets that appear at the inputs of the sorter contain both the packet with the highest

priority and the packet with the lowest priority. The sorter then sorts the packets at the M + 1 inputs in the

order of their priorities. By so doing, the first output from the sorter is the packet with the highest priority

and the (M + 1)th output from the sorter is the packet with the lowest priority.

The (M + 1) × (M + 1) switch on the right hand side is a shifter that only has two connection patterns.

When c(t) = 0, its connection pattern is realized by the (M + 1)× (M + 1) identity matrix, i.e., the matrix

I = (Iij) with Ii,j = 1 for i = j and Ii,j = 0 for i �= j. As such, the (M + 1)th input of the shifter is

connected to the (M + 1)th output of the shifter and the packet with the lowest priority is sent out from the

output link. On the other hand, when c(t) = 1, its connection pattern is realized by the (M + 1)× (M + 1)

circular-shift matrix, i.e., the matrix P = (Pij) with Pi,j = 1 for i = (j mod (M + 1)) + 1 and Pi,j = 0

otherwise. As such, the first input of the shifter is connected to the (M + 1)th output of the shifter and

the packet with the highest priority is sent out from the output link. Thus, the construction emulates a

complementary priority queue if (A1) holds.

The M outputs of the shifter, indexed from i = 1, . . . ,M , are connected back to the the corresponding M

inputs of the sorter via M fiber delay lines with delays di, i = 1, . . . ,M . For a fiber delay line with delay d,

there are d packets stored in that delay line. As such, there are
∑M

i=1 di packets stored in the M fiber delay

lines. The question is then how we choose di’s so that the assumption in (A1) holds. This is answered in

Proposition 4 below.

Proposition 4 Suppose that (A1) holds at time 0. If 0 < di ≤ min[i,M + 1 − i] for all i = 1, 2, . . . ,M ,

then the construction in Figure 5 is a complementary priority queue with buffer
∑M

i=1 di.

Proof. It suffices to argue by induction that (A1) holds for all time. Suppose that (A1) holds up to time

t− 1. As such, we have exactly emulated a complementary priority queue with buffer
∑M

i=1 di up to time t.

For both cases c(t) = 0 and c(t) = 1, we also know that the priorities of the packets at the M outputs of the

shifter, indexed from 1, 2, . . . ,M , are decreasing. Let us consider the packet at the ith output of the shifter.

Call this packet the tagged packet. For the tagged packet, there are i − 1 packets that have priority higher

than its priority and there are M − i packets that have priority lower than its priority. As the construction

departs a packet in a time slot, the tagged packet cannot be the packet with the highest priority or the packet

with the lowest priority for the next min[i − 1,M − i] time slots. As the delay of the ith delay line di is

less than or equal to min[i,M + 1 − i], it follows that the tagged packet cannot be either the packet with

the highest priority or the packet with the lowest priority until it appears at the input of the sorter. Thus, the

assumption (A1) holds at time t.

We first note that the purpose of having two (M + 1) × (M + 1) crossbar switches in our construction is
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for the ease of the presentation and the proof. In practice, one can combine these two switches into one to

reduce the hardware cost. Also, note that for M = 2k − 1, the maximum buffer size that can be achieved

by Proposition 4 is to set di = i for i = 1, 2, . . . , k, and di = 2k − i for i = k + 1, k + 2, . . . , 2k − 1. For

this, we have buffer size
∑2k−1

i=1 di = k2. And for M = 2k, the maximum buffer size that can be achieved

by Proposition 4 is to set di = i for i = 1, 2, . . . , k, and di = 2k + 1 − i for i = k + 1, k + 2, . . . , 2k.

For this, we have buffer size
∑2k

i=1 di = k2 + k. One less efficient way, as originally proposed in [10], is

to choose M = 2k − 1 and set di = i for i = 1, 2, . . . , k, and di = 1 for i = k + 1, k + 2, . . . , 2k − 1,

which gives buffer size
∑k

i=1 di = (k2 + k)/2. As shown in Proposition 3, a complementary priority queue

(in conjunction with a 1 × 2 switch) can be used for emulating a priority queue. Proposition 4 recovers the

result in [10] as a special case. Finally, we note that if one would like to drop the arriving packet when the

buffer is full, one can simply add a 1 × 2 switch at the input as discussed for FIFO queues in [8].

IV. EXTENSIONS TO PRIORITY QUEUES WITH MULTIPLE INPUTS

In this section, we extend our result to priority queues with multiple inputs. For this, let us consider an

N -to-1 priority queue with buffer B. For such a queue, there are N input links, one control input c(t), and

N + 1 output links. The N + 1 output links consist of one output link for departing packets and N output

links for lost packets.

The definition of an N -to-1 priority queue is basically the same as that in Definition 1. An N -to-1

priority queue also satisfies the flow conservation property in (P1), the non-idling property in (P2) and the

priority departure property in (P4). The key difference is that there might be multiple packet losses in a

time slot as there are multiple packet arrivals in a time slot. For this, we need to modify the maximum

buffer usage property in (P3) and the priority loss property in (P5). Let c(t) be the state of the control input,

q(t) be the set of packets stored in the buffer at time t and a(t) be the set of packets arriving at time t. If

|q(t − 1) ∪ a(t)| − c(t) > B, then there are |q(t − 1) ∪ a(t)| − c(t) − B lost packets at time t. When there

are � lost packets in a time slot (for some � ≥ 1), these � lost packets are selected from the � lowest priority

packets among the packets in q(t − 1) ∪ a(t).

Analogous to the construction of a priority queue in Figure 5, we show a construction of an N -to-1

priority queue in Figure 6. To operate such a queue, we view every empty time slot in an input link as a

fictitious packet. Fictitious packets are assigned with priorities lower than any real packets. Furthermore,

the priorities among fictitious packets are ranked according to their arrival times and their arriving links. By

so doing, there is an arriving packet at every input link in every time slot, and there is a total order among

all the packets. As such, one can easily map an N -to-1 priority queue to an N -to-1 complementary priority

queue with the complementary priority departure property, i.e., the N lowest priority packets are sent out

for c(t) = 0, and the N − 1 lowest priority packets and the highest priority packet are sent out for c(t) = 1.
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Fig. 6. A construction of an N -to-1 priority queue with buffer
∑M

i=1 di.

As the construction in Figure 5, the (M + N) × (M + N) crossbar switch on the left hand side acts as

a sorter that sorts the packets at the M + N inputs in the order of their priorities. The first M + 1 outputs

of the sorter are connected to the (M + 1) × (M + 1) crossbar switch on the right hand side that acts as

a shifter. The remaining N − 1 outputs of the sorter are connected to the N − 1 loss links, indexed from

2, 3, . . . , N . As before, the shifter only has two connection patterns. Its connection pattern is realized by

the (M + 1) × (M + 1) identity matrix for c(t) = 0 and by the (M + 1) × (M + 1) circular-shift matrix

for c(t) = 1. The M outputs of the shifter, indexed from i = 1, . . . ,M are connected back to the the

corresponding M inputs of the sorter via M fiber delay lines with delays di, i = 1, . . . ,M . The (M + 1)th

output from the shifter is connected to a 1× 2 switch. When c(t) = 1, the (M +1)th output from the shifter

is connected to the departure link via the 1 × 2 switch. On the other hand, it is connected to the first loss

link when c(t) = 0.

As there might be N lowest priority packets sent out from the corresponding N -to-1 complementary

priority queue in a time slot, the key insight for the construction in Figure 5 can be modified as follows:

(A2) All the packets stored in all the fiber delay lines in Figure 6 cannot be either the packet with the

highest priority or one of the N lowest priority packets until they appear at the inputs of the sorter.

In the following, we provide a condition for (A2) to hold. Under such a condition, we can then emulate
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an N -to-1 priority queue. The proof is almost the same as that for Proposition 4 and thus is omitted.

Proposition 5 Suppose that (A2) hold at time 0 and 0 < di ≤ min[i, �M−i
N � + 1] for all i = 1, 2, . . . ,M ,

then the construction in Figure 6 is an N -to-1 priority queue with buffer
∑M

i=1 di.

As commented before, the two switches in Figure 6 can be replaced by one (M +N)×(M +N) crossbar

switch. Suppose that M = N(k−1)+k+r, where k ≥ 1 and 0 ≤ r ≤ N , then the maximum buffer size that

can be achieved by Proposition 5 is to set di = i for 1 ≤ i ≤ k−1, di = k for k ≤ i ≤ k+r, and di = k−j

for k+r+(j−1)N +1 ≤ i ≤ k+r+jN and 1 ≤ j ≤ k−1. Therefore, we can construct an N -to-1 priority

queue with buffer B = k(k−1)
2 (N + 1)+ (r + 1)k using a single ((N + 1)k + r)× ((N + 1)k + r) crossbar

switch. Finally, we note that one can further extend our construction to priority queues with multiple inputs

and multiple outputs.

V. CONCLUSIONS

In this short paper, we provided a simple proof for the constructions of priority queues. We derived a

general result that recovered the result in [10] as a special case. Further, we extended our constructions to

priority queues with multiple inputs.

We note that the complexity of our construction is still much larger than the lower bound derived in [10].

For certain types of priority queues, one can push the complexity lower. For example, consider a priority

queue that only has K priority classes of packets. Within each class, packets are served in the FIFO order.

Then one can construct such a priority queue with K FIFO queues. As a FIFO queue with buffer B can be

constructed with O(log B) 2× 2 crossbar switches (see e.g., [8]), the complexity (in terms of the number of

2 × 2 switches) for the construction of such a priority queue is then O(K log B).
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